Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Fig. S1 (a) SEM and (b) TEM images of PB nanoparticles used in this study.

Fig. S2 SEM images of the un-calcined samples prepared with various GO:PB ratios [The GO:PB ratios are (a) 25:75, (b) 50:50, (c) 75:25, and (d) 100:0, respectively].

Fig. S3 SEM image of the GO/IO hybrid prepared from the thermal treatment of the GO/PB sample (GO:PB=25:75) at 400 °C in air.

Fig. S4 The cross-sectional (a) HAADF-STEM image and (b-d) TEM elemental mapping images of the GO/IO hybrid prepared from the thermal treatment of the GO/PB sample (GO:PB =25:75) at 400 °C in air.

Fig. S5 High-resolution TEM (HRTEM) image of the interface between GO and IO.

Fig. S6 High-resolution XPS spectra for (a) O 1*s*, (b) C 1*s* (c) Fe 2*p* orbitals of the GO/IO hybrid prepared from the thermal treatment of the GO/PB sample (GO:PB =25:75) at 400 °C in air.

Note: The O1s XPS peak appears at a binding energy of 529.8 eV, which shows the typical metal oxide state (**Fig. S6a**).^[R1] Another peak at a higher binding energy can be attributed to the surface OH group.^[R2] The C1s XPS peaks are deconvoluted to 284.5 eV (C-C), 285.7 eV (C-OH, C-O-C), and 289.1 eV (COOH), respectively (**Fig. S6b**).^[R2] The two Fe 2*p* XPS peaks at 710.8 and 724.1 eV with two satellite peaks are indicative of the Fe³⁺ state, thus confirming the successful conversion of the initial PB to Fe₂O₃ (**Fig. S6c**).^[R1]

- [R1] S. Tanaka, B. P. Bastakoti, Y. Li, S. Yusa, D. Ishii, K. Kani, A. Fatehmulla, W. A. Farooq, M. A. A. Shiddiky, Y. Bando, Y. V. Kaneti, Y. Yamauchi, and M. S. A. Hossain, *Eur. J. Inorg. Chem.*, 2017, 2017, 1328-1332.
- [R2] W. K. Jo and N. C. S. Selvam, *Dalton Trans.* 2015, 44, 16024-16035.