Supplementary Information for:

Three-dimensional reduced graphene oxide powder for efficient microwave absorption in S-band (2-4 GHz)

Shuai Fang,^{*a,b*} Daqing Huang,^{*d*} Ruitao Lv,^{**a,c*} Yu Bai,^{*c*} Zheng-Hong Huang,^{*a,c*} Jialin Gu,^{*c*} and Feiyu Kang^{**a,b,c*}

^aState Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. E-mail: lvruitao@tsinghua.edu.cn ^bEngineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China. E-mail: fykang@tsinghua.edu.cn ^cKey Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

^dBeijing Institute of Aeronautical Materials AVIC, Beijing 100095, China

Fig. S1 Reflection loss of three-dimensional reduced graphene oxide (3D-rGO) samples without and after hydrogen reduction at 900 °C for 30 min. The coating thickness and content of 3D-rGO samples in paraffin matrix are 5 mm and 3 wt.%, respectively.

Fig. S2 Dependence of (a) the real part and (b) imaginary part of the complex permittivity of three-dimensional reduced graphene oxide (3D-rGO) samples without and after hydrogen reduction at 900 °C for 30 min