Electronic Supplementary Information

Spirolactam Capped Cyanine Dyes for Designing NIR Probes to Target Multiple Metal Ions

Chirantan Kar^a, Yutaka Shindo^b, Kotaro Oka^b, Shigeru Nishiyama^c, Koji Suzuki^a and Daniel Citterio^a

^aDepartment of Applied Chemistry, ^bDepartment of Biosciences and Informatics and ^cDepartment of Chemistry, Faculty of Science and Technology Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Table of Content

1. Optical properties of IR-NCS and IR-PYR in Methanol	S2
2. Metal dependent UV visible spectra of IR-NCS and IR-PYR	S2
3. Benesi-Hildebrand Plot	S2
4. Dihedral angle comparison	S3
5. Absorbance spectra of IR-NCS in acidic and basic medium	S3
6. Job's plot diagrams	S4
7. pH dependent fluorescence of IR-NCS and IR-PYR	S5
7. Mass spectra of the compounds.	S 6
8. NMR spectra of the compounds	S9

Table S1: Optical properties of IR-NCS and IR-PYR in Methanol.

Probe	$\lambda_{abs} (nm)^{a}$	$\lambda_{em} (nm)^{b}$	Stokes shift (nm)	$\varepsilon_{\rm max} ({\rm M}^{-1} {\rm cm}^{-1})$	$\Phi_{\mathrm{f}}^{\ \mathrm{c}}$
IR-NCS	763	784	21	268800	0.0619
IR-PYR	766	784	18	88000	0.0982

^a The maximal absorption of the dye; ^b The maximal emission of the dye; ^c Φ_f is the relative fluorescence quantum yield estimated by using ICG ($\Phi_f = 0.13$ in DMSO) as a fluorescence standard.

Figure S1: UV/Vis spectra of IR-NCS and IR-PYR in presence of various metal ions.

Figure S2: Binding constant for the 1:1 IR-PYR-Zn complex, calculated using Benesi-Hildebrand method.

Figure S3: Dihedral angles (between the bonds linking the highlighted atoms) of I1, IR-HGP and IR-NCS.

Figure S4: Dihedral angles (between the bonds linking the highlighted atoms) of IR-PYR and IR-PYR-Zn.

Figure S5: Absorbance spectra of 10 μ M IR-NCS in solutions of pH 4 and pH 9.

Figure S6: Job's plot diagram for the IR-PYR and Zn^{2+} metal ion complex. X_{host} represent the mole fraction of IR-PYR and ΔI represent the change in fluorescence intensity.

Figure S7: Job's plot diagram for the IR-PYR and Cd^{2+} metal ion complex. X_{host} represent the mole fraction of IR-PYR and ΔI represent the change in fluorescence intensity.

Figure S8: pH dependent fluorescence of IR-NCS.

Figure S9: pH dependent fluorescence of IR-PYR

Page 1

1: TOF MS ES+ 3.20e+004

780.5217

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 1 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 49-49 H: 53-54 N: 5-5 O: 1-1 Kar4 20160405-04 21 (0.353) Cm (20:23) 728.4327 729.4323

0 703.42 0 700.0	40 711.3933 712.4047 710.0 720	, 	730.4432 731.4310 74 0.0 740.	43.3994 0 750	758.45457(0.0 760.0	55.4933 776.460 770.0 7	781.5245 782.5286 788.8117 80.0 790.0 m/z
Minimum: Maximum:		3.0	5.0	-1.5 50.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula
728,4327	728.4328	-0.1	-0.1	25.5	282.0	0.0	C49 H54 N5 O

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0

Maximum:

Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 1 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 43-43 H: 50-52 N: 4-4 O: 1-1 Kar2 20151102-05 44 (0.711) Cm (43:46) 1: TOF MS ES+ 2.13e+003 639.4087 ù 100-% 640.4149 641.4255 637.3949 639.0721 642.4401 644.2245 644.9583 636.9670 633.1450 634.8275 0-645.0 633.0 634.0 644.0 635.0 636.0 642.0 637.0 638.0 639.0 640.0 641.0 643.0 -1.5 50.0 Minimum:

Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Form	ıla		
639.4087	639.4063	2.4	3.8	20.5	147.6	0.0		C43	Н51	N4	0

10.0

Figure S12: Mass spectral data of I2 (C₄₃H₅₁N₄O).

3.0

Tolerance = Element pre Number of i	500.0 PPM / ediction: Off sotope peaks us	DBE: min = · ed for i-FIT =	-1.5, max = = 3	50.0				
Monoisotopic 1 formula(e) Elements Us C: 43-43 H Kar 20151028-04 (Mass, Even Elect evaluated with 1 re ed: H: 49-50 N: 2-2 56 (1.081) Cm (62:71	or lons esults within lin O: 2-2	mits (up to 5	0 best isotop	pic matches	for each mass)		1: TOF MS ES+
100				625.3878	B 526.3940			1.258+004
0 605.0	612.383	5615.3610 61 615.0	7.3758 624	625.0	627.3997	631.2679 634.0983 635.0	641.1437	645.2323 645.0
Minimum: Maximum:		500.0	500.0	-1.5 50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
625,3878	625,3794	8.4	13.4	20.5	131.5	0.0	C43 H49	N2 02

Page 1

----- m/z

Page 1

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 50-50 H: 53-54 N: 5-5 O: 1-1 Kar Hg complex 20160325-01 28 (0.456) Cm (28)

100 	536.5 298.2745 522.5249 635 368.3531 400	740. 409 37.5424 735.5143 600	4316 741.4384 742.4413 773.4055 800	<u>1025.5231</u> 1000	1249.7728		53.6348		1800	••	
Minimum: Maximum:		3.0	500.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT ((Norm)	Formu	ıla		
740.4316	740.4328	-1.2	-1.6	26.5	132.3	0.0		C50	H54	N5	0

Figure S15: Mass spectral data of IR-PYR-Zn complex (C₄₉H₅₃N₆O₄Zn).

Page 1

1: TOF MS ES+

Page 1

Figure S16: Mass spectral data of IR-PYR-Cd complex (C₄₉H₅₃N₆O₄Cd).

Figure S17: ¹H NMR spectra of I1 in MeOH-d₄

Figure S18: ¹³C NMR spectra of I1 in MeOH-d₄

Figure S19: ¹H NMR spectra of I2 in CDCl₃

Figure S20: ¹³C NMR spectra of I2 in CDCl₃.

Figure S21: ¹H NMR spectra of IR-NCS in CDCl₃.

Figure S22: ¹³C NMR spectra of IR-NCS in CDCl₃.

Figure S23: ¹H NMR spectra of IR-PYR in CDCl₃.

Figure S24: ¹³C NMR spectra of IR-PYR in CDCl₃.