A Ni-containing Decaniobate Incorporating Organic Ligands:

Synthesis, Structure, and Catalytic for Allylic Alcohol Epoxidation

Li Li, Yanjun Niu, Kaili Dong, Pengtao Ma, Chao Zhang, Jingyang Niu* and Jingping Wang*

Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China. E-mail: jyniu@henu.edu.cn, jpwang@henu.edu.cn; Fax: (+86) 371-23886876.

CONTENTS

Section 1 Bond valence sum calculations of O and Ni

Section 2 Additional Structural Figures

Section 3 Additional measurements

Section 4 Mass spectrometric study of compound 1

Section 5 Magnetic Properties of compound 1

Section 6 Catalytic properties

Table S1 The bond valence sum calculations of all the oxygen atoms on polyanion 1				
Atom	Bond valence	Atom	Bond valence	
O(1)	1.48	O(2)	1.45	
O(3)	1.45	O(4)	1.45	
O(5)	1.77	O(6)	1.46	
O(7)	1.83	O(8)	1.80	
O(9)	1.74	O(10)	1.72	
O(11)	1.95	O(12)	1.69	
O(13)	1.75	O(14)	1.81	
O(15)	1.87	O(16)	1.88	

1. Bond valence sum calculations of O and Ni

 Table S2 The bond valence sum calculations of all the Ni atoms in polyanion 1

Bond	Bond length	Bond Valence	Valence Sum
Ni(1)–O(13)	2.012	0.380	
Ni(1)-O(13 ¹)	2.012	0.380	
Ni(1)–O(15)	2.092	0.306	Σ(Ni1)=1.961
Ni(1)-O(15 ¹)	2.091	0.307	
Ni(1)–O(16)	2.107	0.294	
Ni(1)-O(16 ¹)	2.107	0.294	
Ni(2)-O(11 ¹)	2.031	0.361	
Ni(2)–O(14)	2.039	0.353	
Ni(2)–O(15)	2.132	0.274	Σ(Ni2)=2.103
Ni(2)–O(16)	2.136	0.272	
Ni(2)–N(1)	2.061	0.431	
Ni(2)–N(2)	2.078	0.412	

2. Additional Structural Figures

Fig. S1 (a) the structure of polyanion 1; (b) the structure of polyanion $\{Nb_{10}\}$ or $\{W_{10}\}$

Fig. S2 Ball-and-stick representation of the {Na₈} unit, Colour code: Na (yellow) and O (red).

3. Additional measurements

3.1 XRD

Fig. S3 Comparison of the simulated and experimental XRPD patterns

3.2 IR spectra

Fig. S4 The comparison of IR curves (black: compound 1; blue: $K_7HNb_6O_{19}$ ·13H₂O)

Fig. S5 The comparison of UV-vis curves (black: compound 1; blue: K₇HNb₆O₁₉·13H₂O)

Fig. S6 The UV-vis spectra of compound 1 in the different range (outside: in the range of 190 to 800 nm; inside: in the range of 200 to 360nm.)

4. Mass spectrometric study of compound 1

Herein, ESI-MS date was obtained on AB SCIEX Triple TOF 4600 equipped with a syringe pump for direct source injection, with a Collision Energy (V) of -5, Declustering Potential (V) of -10 and an injection rate of 10 μ L /min.

Fig. S7 The ESI mass spectrum of ${Ni[Ni(en)]_2Nb_{10}O_{32}}$ around m/z 587.95. Number correspond to peaks in table S3.

Formula	m/z (calcd)	<i>m/z</i> (found)	Peak Number
$[Ni_{3}Nb_{10}O_{32}H_{5}]^{3-}$	540.72	540.95	1
[Ni ₃ Nb ₁₀ O ₃₂ NaH ₄] ³⁻	548.05	548.28	2
$[Ni_{3}Nb_{10}O_{32}Na_{2}H_{3}]^{3-}$	555.38	555.61	3
$[Ni_{3}Nb_{10}O_{32}Na_{3}H_{2}]^{3-}$	562.70	562.94	4
$[{\sf Ni}_{3}{\sf Nb}_{10}{\sf O}_{32}{\sf Na}_{4}{\sf H}]^{3-}$	570.03	570.28	5
${Ni[Ni(en)]_2Nb_{10}O_{32}H_5}^{3-}$	580.96	580.79	6
{Ni[Ni(en)] ₂ Nb ₁₀ O ₃₂ NaH ₄ } ³⁻	587.95	588.11	7
${Ni[Ni(en)]_2Nb_{10}O_{32}Na_2H_3}^{3-}$	595.61	595.44	8
${Ni[Ni(en)]_2Nb_{10}O_{32}Na_3H_2}^{3-}$	602.61	602.77	9
{Ni[Ni(en)] ₂ Nb ₁₀ O ₃₂ Na ₄ H} ³⁻	610.10	609.94	10
{Ni[Ni(en)]_Nb ₁₀ O ₂₂ Na ₂ } ³⁻	617 42	617.30	11
$\{N_{i} N_{i} _{0}, N_{i}, N_$	623.43	672.63	12
$\{N_1[N_1(e_1)]_2 N_{D_1} \cup \bigcup_{j=0}^{\infty} N_{$	625.45	025.05	12
{NI[NI(en)] ₂ Nb ₁₀ O ₃₂ Na ₅ (H ₂ O) ₂ } ³	629.43	629.63	13
${Ni[Ni(en)]_2Nb_{10}O_{32}Na_5(H_2O)_3}^3$	635.44	635.28	14

 Table S3 Detailed assignment of mass spectral data around m/z 587.95

Fig. S8 The ESI mass spectrum of ${Ni[Ni(en)]_2Nb_{10}O_{32}}$ around m/z 904.45.Number correspond to peaks in table S4.

Formula	m/z (calcd)	m/z (found)	Peak Number
lonnuu	, 2 (calca)	<i>mj2</i> (roana)	
[Ni ₃ Nb ₁₀ O ₃₂ H ₆] ²⁻	811.59	811.97	1
$[Ni_{3}Nb_{10}O_{32}NaH_{5}]^{2-}$	822.58	822.97	2
$[{\rm Ni}_{3}{\rm Nb}_{10}{\rm O}_{32}{\rm Na}_{2}{\rm H}_{4}]^{2-}$	833.57	833.95	3
$[Ni_{3}Nb_{10}O_{32}Na_{3}H_{3}]^{2-}$	844.56	844.95	4
$[Ni_3Nb_{10}O_{32}Na_4H_2]^{2-}$	855.55	855.95	5
$[Ni_{3}Nb_{10}O_{32}Na_{5}H]^{2-}$	866.54	866.45	6
$\{Ni[Ni(en)]_2Nb_{10}O_{32}H_6\}^{2-}$	871.47	871.68	7
${\rm Ni[Ni(en)]_2Nb_{10}O_{32}NaH_5}^{2-}$	882.46	882.68	8
${Ni[Ni(en)]_2Nb_{10}O_{32}Na_2H_4}^2$	893.45	893.67	9
${Ni[Ni(en)]_2Nb_{10}O_{32}Na_3H_3}^{2-}$	904.45	904.66	10
${Ni[Ni(en)]_2Nb_{10}O_{32}Na_4H_2}^{2-}$	915.44	915.65	11
${\rm Ni[Ni(en)]_2Nb_{10}O_{32}Na_5H}^{2-}$	926.64	926.44	12
${Ni[Ni(en)]_2Nb_{10}O_{32}Na_6}^{2-}$	937.63	937.43	13
${Ni[Ni(en)]_2Nb_{10}O_{32}Na_6(H_2O)\}^{2-}}$	946.64	946.44	14
${\rm Ni[Ni(en)]_2Nb_{10}O_{32}Na_6(H_2O)_2}^{2-}$	955.65	955.96	15
${\rm Ni[Ni(en)]_2Nb_{10}O_{32}Na_6(H_2O)_3}^{2-}$	964.66	964.44	16

Table S4 Detailed assignment of mass s	pectral data around m/z 904.45

5. Magnetic Properties of compound 1

Fig. S9 The plots of $\chi_{\rm M}^{-1}$ versus T in the range of 1.8–300 K.

6. Catalytic properties

Table S5 Epoxidation of allylic alcohols with Catalyst 1

^aReaction conditions for the entry 1: catalyst (12 μ mol), substrate (5 mmol) and H₂O (3 mL) at 25 °C. ^bReaction conditions for the entries 2 to 4: catalyst (12 μ mol), substrate (5 mmol) and H₂O (3 mL) at 35 °C. ^cThe products and by-products were identified by GC-MS with dodecane as an internal standard.

Table S6 Epoxidation of 3-Meth	yl-2-buten-1-ol with	different ca	talysts ^a
--------------------------------	----------------------	--------------	----------------------

Entry	Catalyst	Substrate	Product	Con.º(%)	Sel.(%)
1 ^b	/			5	60
2	Ni(NO ₃) ₂		٩_ (8	56
3	K ₇ HNb ₆ O ₁₉	ОН	ОН	95	91
4	Compound 1			98	94

^aReaction conditions for the entries 1 to 4: catalyst (12 μ mol), substrate (5 mmol) and H₂O (3 mL) at 25 °C. ^bBlank experiment. The reaction was carried out without catalyst. ^cConversion determined by using GC with dodecane as an internal standard. The products were identified by GC-MS.

 Table S7 The conversion and selectivity of epoxidation of 3-Methyl-2-buten-1-ol carried out with the recovered catalyst and the solution at the end of the first run

Entry	Substrate	Product	Con. ^d (%)	Sel.(%)
 1 ^a			98	94
2 ^b	\sim		8	73
3 ^c	H0 <	H0 V V	89	92

^aReaction conditions : catalyst (12 μ mol), substrate (5 mmol), 30%H₂O₂ (8 mmol) and H₂O (3 mL) at 25 °C, 5 minutes. ^bRecovered catalyst. ^cSolution at the end of the first run. ^dConversion determined by using GC with dodecane as an internal standard. The products were identified by GC-MS.

Fig. S10 Recycling of compound 1 catalytic system for the epoxidation of 3-Methyl-2-buten-1-ol.

Fig. S11 Recycling of $K_7HNb_6O_{19}$ ·13H₂O catalytic system for the epoxidation of 3-Methyl-2-buten-1-ol.

					- / / - 0	LJ - L -
Entry	Substrate	Product	30%H ₂ O ₂ (mmol)	Time (min)	Con. ^b (%)	Sel. (%)
1 ^a	но	HO	8	5	95	91
2	но	но	8	60	52	91
3	но	но	8	60	64	96
4	H0//m	HO	8	60	97	96

Table S8 Epoxidation of various allylic alcohols with H₂O₂ in water catalyzed by K₇HNb₆O₁₉·13H₂O

^a Reaction conditions for the entries 1 to 4: catalyst (12 μ mol), substrate (5 mmol), 30%H₂O₂ (8 mmol)and H₂O (3 mL) at 25 °C.^b Conversion determined by using GC with dodecane as an internal standard. The products were identified by GC-MS

Fig. S12 IR spectra of the catalyst before and after the reaction: (a) the used catalyst; (b) the fresh catalyst.

Table 35 The efficiency of hydrogen perovide					
Reaction	Substrate	H_2O_2 efficiency ^c of Compound 1	H_2O_2 efficiency of $K_7HNb_6O_{19}$ ·13 H_2O (%)		
		(%)			
1 ^a		89	87		
	но				
2 ^b		42	55		
	HU				
3	но	51	77.3		
4	~/m	69	90		
	но				

Table S9 The efficiency of hydrogen peroxide

^{*a*} Reaction conditions for the entry 1: catalyst (12 μmol), substrate (5 mmol), 30% H₂O₂ (8 mmol) and H₂O (3 mL) at 25 °C, 5 min. ^{*b*} Reaction conditions for the entries 2 to 4: catalyst (12 μmol), substrate (5 mmol), 30% H₂O₂ (8 mmol)and H₂O (3 mL) at 35 °C, 60 min. ^{*c*} Residual H₂O₂ after the reaction was estimated by means of the iodometric method. H₂O₂ efficiency (%) = products (mol) /consumed H₂O₂ (mol) × 100.