Rh(III)-catalyzed sequential C–H activation and annulation: Access to *N*-fused heterocycles from arylazoles and αdiazocarbonyl compounds

Jiyang Jie, Haoyi Li, Songxiao Wu, Qingyu Chai, Haining Wang ^{b*} and Xiaobo Yang ^{a*} ^aInstitute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China. E-mail: bxy1223@gmail.com ^bDepartment of Chemistry and FQRNT Centre for Green Chemistry and Catalysis,

McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8 (Canada) E-mail: haining.wang2@mail.mcgill.ca

Table of Contents

General Information	P 2
The reactivity comparison of azoles and the DFT calculation	P2
Experimental Procedure and Characterization Data of Products 3 and 4a	P14
References	P24
The ¹ H and ¹³ C NMR spectra of compounds 3 and 4a	P25

1. General Information

Chemicals were used received without special purification unless stated otherwise. Chemical shifts in ¹H NMR (600 MHz or 400 MHz) and ¹³C NMR (150 MHz or 100 MHz) spectra were expressed in ppm relative to residual chloroform (δ 7.26 ppm for ¹H, δ 77.0 ppm for ¹³C) or tetramethylsilane (δ 0.0 ppm for ¹H and ¹³C). ¹H NMR data were reported as follows: chemical shift, multiplicity (s= singlet, d= doublet, t= triplet, q= quartet, m= multiplet), coupling constant (Hz), and relative intensity. ¹³C NMR spectra were recorded in deuterated solvent. Chemical shifts were reported in ppm with internal solvent signal as a standard. HRMS were obtained on Shimadzu Japan LCMS-IT/TOF.

Substituted pyrazole **1a-o**^[1], diazo compounds **2a-i**^[2], 3,5-diphenyl-1*H*-1,2,4-triazole **1s**^[3], and substituted 2-phenylbenzoimidazole **1p-r**^[4] were synthesized according to literature procedures. The rhodium complexes [Cp*RhCl₂]₂ were prepared according to the literature protocols^[5]. General procedure for synthesis of 2-Diazocyclohexane-1,3-dione (**2i**)

To a solution of cyclohexane-1,3-dione (2.60 mmol) and *p*-ABSA (2.86 mmol) in MeCN (18 mL) at 0° C, Et₃N (1.8 mL) was added dropwise. After stirring at room temperature for 5 hours the reaction mixture was concentrated in vacuo. Water (20 mL) was added. The resulting mixture was extracted with diethyl ether (2 x 20 mL). The combined organic layer was washed with brine (20 mL) and dried over MgSO₄. The solvent was removed under reduced pressure, and the residue was purified by a silica gel column chromatography with petroleum ether/ ethyl acetate as the eluent to give the 2-Diazocyclohexane-1,3-dione (**2i**).

2. The reactivity comparison of azoles and the DFT calculation

2.1 The reactivity comparison of aryl pyrazole and aryl imidazole

^aReaction condition:1 (0.2 mmol), 2 (0.25 mmol), $[Cp*RhCl_2]_2$ (5 mol%) /AgSbF₆ (20 mol%), and THF (2 mL) were stirred under Ar for 24h. ^bIsolated yield.

Scheme 1 The reactivity comparison of aryl pyrazole and aryl imidazole

Figure 1 Comparison of the activation energy

^{2.3} The details of DFT calculation

All the DFT calculations were performed with the Gaussian 09 program package. The geometry optimizations of all minima and transition states involved were performed at the B3LYP levels of theory. The 6-31G basis set was used for C, H, O, and N atoms, while the LANL2DZ basis set was used for Rh.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

INT-pyrazole

Sum of electronic and zero-point Energies=	-1294.632399
Sum of electronic and thermal Energies=	-1294.604440
Sum of electronic and thermal Enthalpies=	-1294.603495
Sum of electronic and thermal Free Energies=	-1294.698413

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z

1	6	0	-2.241215	-2.430714	3.489830
2	6	0	-2.702620	-1.152941	3.164210
3	6	0	-2.152909	-0.464584	2.070785
4	6	0	-1.083443	-1.064934	1.328185
5	6	0	-0.658779	-2.373063	1.659591
6	6	0	-1.240022	-3.057220	2.724787
7	1	0	-2.677747	-2.955948	4.332725
8	1	0	-3.516868	-0.707947	3.725247
9	1	0	-0.377490	-0.425647	0.771530
10	1	0	0.164837	-2.818677	1.110915
11	1	0	-0.904534	-4.054494	2.985700
12	6	0	-3.374319	1.884859	2.014901
13	6	0	-3.688978	2.663818	0.843689
14	1	0	-3.604830	2.141220	3.036663
15	6	0	-2.709260	0.774384	1.546895
16	7	0	-2.663660	0.880562	0.138687
17	7	0	-3.258498	2.044120	-0.282168
18	45	0	-2.030882	-0.657259	-0.853965
19	6	0	-1.004837	-2.112500	-2.318843
20	1	0	-0.295103	-2.864877	-2.012998
21	6	0	-2.413556	-2.282189	-2.425321
22	1	0	-2.964638	-3.187588	-2.219509
23	6	0	-2.998144	-1.015447	-2.840949
24	1	0	-4.046674	-0.829324	-3.016370
25	6	0	-0.694419	-0.740670	-2.628981
26	1	0	0.281507	-0.283361	-2.563202
27	6	0	-1.935570	-0.066911	-2.981420
28	1	0	-2.038605	0.968952	-3.265407
29	6	0	1.815218	1.764219	-0.473237
30	6	0	3.798002 5	0.747518	-0.126324

31	6	0	3.207450	1.991755	-0.341773
32	1	0	3.716532	2.937810	-0.425663
33	7	0	2.763853	-0.155593	-0.143391
34	7	0	1.530124	0.443333	-0.347041
35	6	0	5.196076	0.359062	0.077642
36	6	0	5.655850	-0.926348	-0.272458
37	6	0	6.108803	1.278693	0.630271
38	6	0	6.989965	-1.284426	-0.065279
39	1	0	4.980929	-1.637103	-0.741218
40	6	0	7.443450	0.920318	0.828429
41	1	0	5.764848	2.265690	0.920699
42	6	0	7.888069	-0.362675	0.485415
43	1	0	7.331330	-2.275552	-0.344886
44	1	0	8.134642	1.638271	1.256757
45	1	0	8.924868	-0.639979	0.642210
46	1	0	2.811672	-1.137080	0.067108
47	6	0	0.739950	2.773807	-0.725014
48	1	0	-0.247178	2.305085	-0.737016
49	1	0	0.736315	3.545816	0.053042
50	1	0	0.889984	3.284998	-1.683737
51	6	0	-4.378053	3.982423	0.780171
52	1	0	-4.455392	4.318462	-0.255651
53	1	0	-5.388279	3.921474	1.203374
54	1	0	-3.833409	4.742095	1.354300

TS-pyrazole

-1294.589508
-1294.562645
-1294.561701
-1294.649552

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-1.265873	-2.061459	3.742561	
2	6	0	-2.137370	-1.272304	2.984409	
3	6	0	-1.758099	-0.850789	1.702806	
4	6	0	-0.459096	-1.189140	1.175007	
5	6	0	0.372686	-2.033409	1.955586	
6	6	0	-0.017169	-2.453423	3.230519	
7	1	0	-1.566323	-2.388978	4.732341	
8	1	0	-3.115910	-1.015087	3.375726	
9	1	0	0.232377	0.178486	1.156086	
10	1	0	1.338010	-2.344729	1.566225	
11	1	0	0.635791	-3.086819	3.821476	
12	6	0	-3.817279	0.547138	0.784084	
13	6	0	-3.974286	1.024314	-0.556221	
14	1	0	-4.510760	0.669383	1.600359	
15	6	0	-2.595316	-0.103641	0.785196	

16	7	0	-2.076448	-0.023690	-0.508808	
17	7	0	-2.929876	0.685872	-1.336709	
18	45	0	-0.478531	-1.070974	-0.941653	
19	6	0	1.507603	-1.928648	-1.661952	
20	1	0	2.323641	-2.155172	-0.994928	
21	6	0	0.459286	-2.801414	-2.053870	
22	1	0	0.325861	-3.826320	-1.742481	
23	6	0	-0.400476	-2.087852	-3.005776	
24	1	0	-1.283847	-2.495365	-3.473915	
25	6	0	1.252386	-0.650591	-2.283275	
26	1	0	1.863112	0.231717	-2.174520	
27	6	0	0.106262	-0.783765	-3.169246	
28	1	0	-0.323889	0.001482	-3.770891	
29	6	0	-0.266859	3.036080	0.494250	
30	6	0	1.659187	1.840335	0.530141	
31	6	0	1.034958	2.876571	-0.107647	
32	1	0	1.433604	3.488891	-0.900071	
33	7	0	0.680386	1.299426	1.469317	
34	7	0	-0.518730	2.178219	1.459695	
35	6	0	2.994042	1.269742	0.408618	
36	6	0	3.392635	0.149596	1.170836	
37	6	0	3.930264	1.856900	-0.473002	
38	6	0	4.684411	-0.367919	1.050495	
39	1	0	2.699784	-0.323950	1.858980	
40	6	0	5.217079	1.333839	-0.591404	
41	1	0	3.655834	2.731343	-1.052972	
42	6	0	5.599789	0.220120	0.169203	
43	1	0	4.979130	-1.222633	1.649525	
44	1	0	5.925133	1.798753	-1.268200	
45	1	0	6.603861 8	-0.179458	0.081221	

46	1	0	0.992053	1.184085	2.437434
47	6	0	-5.145705	1.833138	-1.143740
48	1	0	-4.766412	2.704853	-1.634811
49	1	0	-5.677659	1.229458	-1.849074
50	1	0	-5.806953	2.127080	-0.355546
51	6	0	-1.334081	4.084353	0.128512
52	1	0	-1.060968	5.031547	0.544602
53	1	0	-1.401293	4.168474	-0.936057
54	1	0	-2.281491	3.781381	0.522873

INT-imidazole

Sum of electronic and zero-point Energies=	-1216.099196
Sum of electronic and thermal Energies=	-1216.075122
Sum of electronic and thermal Enthalpies=	-1216.074178
Sum of electronic and thermal Free Energies=	-1216.158696

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	х	Y	Z	
1	6	0	1.298020	3.703613	-1.685314	
2	6	0	2.166156	3.075696	-0.788170	
3	6	0	1.896321	1.762149	-0.384329	
4	6	0	0.699078	1.119608	-0.852902	
5	6	0	-0.104825	1.737153	-1.843038	
6	6	0	0.190322	3.030441	-2.247985	

7	1	0	1.492371	4.730359	-1.976668
8	1	0	3.049682	3.580277	-0.415059
9	1	0	0.104789	0.643625	-0.035726
10	1	0	-1.002416	1.241279	-2.195067
11	1	0	-0.440753	3.539322	-2.967238
12	6	0	4.180586	0.092222	1.816713
13	1	0	5.008144	0.061497	2.505956
14	6	0	2.727272	0.966235	0.472484
15	7	0	2.444195	-0.416257	0.511358
16	45	0	1.010567	-1.046051	-0.716538
17	6	0	-0.962345	-1.905576	-1.414250
18	1	0	-1.833853	-1.288461	-1.570669
19	6	0	0.020936	-2.258055	-2.372058
20	1	0	0.045268	-1.962267	-3.409968
21	6	0	1.001024	-3.127271	-1.719460
22	1	0	1.868403	-3.558425	-2.197998
23	6	0	-0.563822	-2.482881	-0.140244
24	1	0	-1.084855	-2.363055	0.801118
25	6	0	0.620379	-3.293956	-0.364953
26	1	0	1.134981	-3.878754	0.381770
27	6	0	-0.243006	-0.148475	3.217006
28	1	0	0.209461	-0.715338	4.012954
29	6	0	-1.767661	0.385250	1.732911
30	7	0	-0.738528	1.323789	1.649994
31	6	0	-2.991101	0.406900	0.931745
32	6	0	-3.208179	1.366526	-0.078373
33	6	0	-4.004048	-0.539808	1.196921
34	6	0	-4.403411	1.380702	-0.803161
35	1	0	-2.460043	2.123972	-0.292239
36	6	0	-5.195005 10	-0.522082	0.468422

37	1	0	-3.848320	-1.259478	1.992215
38	6	0	-5.400822	0.436193	-0.533878
39	1	0	-4.561821	2.136593	-1.565314
40	1	0	-5.970180	-1.247187	0.691918
41	1	0	-6.332193	0.454381	-1.089185
42	1	0	-0.805799	2.229575	1.209640
43	7	0	3.768761	1.293004	1.240121
44	7	0	-1.463749	-0.529239	2.662026
45	6	0	3.379947	-0.955408	1.374781
46	1	0	3.408895	-2.003618	1.618717
47	6	0	0.224060	0.991568	2.606618
48	1	0	1.108735	1.584428	2.763648

TS-imidazole

Sum of electronic and zero-point Energies=	-1216.045311
Sum of electronic and thermal Energies=	-1216.022238
Sum of electronic and thermal Enthalpies=	-1216.021294
Sum of electronic and thermal Free Energies=	-1216.100227

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	х	Y	Z
1	6	0	-2.020639	-3.181431	-2.273829
2	6	0	-2.694046	-2.591688	-1.198750

3	6	0	-2.168978	-1.440924	-0.595366
4	6	0	-0.917759	-0.883131	-1.046787
5	6	0	-0.294304	-1.481904	-2.172277
6	6	0	-0.829103	-2.626234	-2.770900
7	1	0	-2.433903	-4.069558	-2.740355
8	1	0	-3.635797	-3.006256	-0.855140
9	1	0	-0.000642	-1.176825	0.145493
10	1	0	0.624991	-1.057229	-2.565879
11	1	0	-0.333257	-3.081348	-3.621657
12	6	0	-3.883653	0.410401	2.081046
13	1	0	-4.566789	0.708753	2.860517
14	6	0	-2.806058	-0.687263	0.466375
15	7	0	-2.201990	0.546220	0.718728
16	45	0	-0.785265	1.157687	-0.488126
17	6	0	1.063651	1.999560	-1.523463
18	1	0	1.785365	1.378337	-2.028797
19	6	0	-0.093317	2.595575	-2.089574
20	1	0	-0.420797	2.516534	-3.115102
21	6	0	-0.756235	3.390507	-1.048849
22	1	0	-1.665975	3.956374	-1.182008
23	6	0	1.072022	2.335479	-0.119292
24	1	0	1.818027	2.024070	0.594698
25	6	0	-0.022730	3.255990	0.146151
26	1	0	-0.272660	3.683439	1.104504
27	6	0	0.043180	-1.137366	3.120326
28	1	0	-0.549651	-1.028476	4.016417
29	6	0	1.727768	-0.959000	1.613310
30	7	0	0.613954	-1.735609	1.075743
31	6	0	2.948936	-0.748340	0.847443
32	6	0	3.100048 12	-1.259315	-0.460475

33	6	0	4.025317	-0.036912	1.425194
34	6	0	4.287964	-1.060280	-1.167746
35	1	0	2.294522	-1.812211	-0.932982
36	6	0	5.207277	0.161547	0.713092
37	1	0	3.942526	0.346421	2.436395
38	6	0	5.343985	-0.348872	-0.585424
39	1	0	4.392926	-1.466963	-2.167659
40	1	0	6.025555	0.704876	1.172169
41	1	0	6.267446	-0.200168	-1.133759
42	1	0	0.840402	-2.662898	0.706222
43	7	0	-3.894801	-0.798232	1.314334
44	7	0	1.332647	-0.546011	2.855702
45	6	0	-2.867059	1.220836	1.728587
46	1	0	-2.591919	2.180976	2.112423
47	6	0	-0.426046	-1.910596	2.111114
48	1	0	-1.373438	-2.398168	2.209213

3. Experimental Procedure and Characterization Data of Products 3 and 4a

3.1 General Procedure for the Syntheses of Products 3 and 4a

To a 25 mL Schlenk tube was added substituted pyrazole **1a-o** or 3,5-diphenyl-1*H*-1,2,4-triazole **1s** or substituted 2-phenylbenzoimidazole **1p-r** (0.20 mmol), [Cp*RhCl₂]₂ (7.0 mg, 5.0 mol %), AgSbF₆ (14.0 mg, 20.0 mol %), diazo compounds **2a-I** (0.25 mmol) was dissolved with THF (2 mL) and then the solvent was injected into the tube through a syringe, and the tube was purged with Ar for three minutes. Then the formed mixture was stirred at 25°C or 60°C or 100°C under Ar for 24h or 48h (as shown in **Table 2** and **Table 3**). The solvent was then cooled to room temperature and the solvent was removed under vacuum distillation. The crude products were purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate= 20:1) to give the desired products **3**.

3.2 Experimental Characterization Data of Products 3 and 4a

ethyl 5-methyl-2-phenylpyrazolo[5,1-a]isoquinoline-6-carboxylate (3aa) :

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3aa** (61 mg, 92% yield) as white solid. Melting point: 106-108°C.

¹H NMR (400 MHz, CDCl₃) δ 8.11 - 8.09 (m, 1H), 8.07 - 8.05 (m, 2H), 7.85 - 7.76

(m, 1H), 7.58 - 7.52 (m, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 7.32 (s, 1H), 4.57 (q, J = 7.1 Hz, 2H), 2.93 (s, 3H), 1.50 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 153.3, 139.8, 135.9, 133.0, 128.7, 128.5, 128.2, 127.0, 126.4, 126.1, 124.5, 123.6, 123.0, 115.6, 95.4, 61.7, 15.8, 14.3. HRMS m/z (ESI) calcd for C₂₁H₁₉N₂O₂ [M+H]⁺ 331.1441, found 331.1442.

methyl 5-methyl-2-phenylpyrazolo[5,1-a]isoquinoline-6-carboxylate (3ab):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3ab** (74 mg, 94% yield) as white solid. Melting point: 166-168°C.

^{CO2Me} ¹H NMR (400 MHz, CDCl₃) δ 8.14 - 8.10 (m, 1H), 8.08 - 8.02 (m, 2H), 7.82 - 7.75 (m, 1H), 7.59 - 7.52 (m, 2H), 7.51 - 7.46 (m, 2H), 7.43 - 7.37 (m, 1H), 7.34 (s, 1H), 4.07 (s, 3H), 2.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 153.4, 139.9, 136.3, 133.0, 128.8, 128.5, 128.2, 127.1, 126.4, 126.1, 124.7, 123.7, 123.0, 115.3, 95.5, 52.6, 15.9. HRMS m/z (ESI) calcd for C₂₀H₁₇N₂O₂ [M+H]⁺ 317.1285, found 317.1281.

tert-butyl 5-methyl-2-phenylpyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3ac):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3ac** (82 mg, 92% yield) as white solid. Melting point: 122-124°C.

¹H NMR (400 MHz, CDCl₃) δ 8.16 - 8.10 (m, 1H), 8.06 - 8.04 (m, 2H), 7.85 - 7.78 (m, 1H), 7.59 - 7.54 (m, 2H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 7.34 (s, 1H), 2.93 (s, 3H), 1.72 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 153.1, 139.7, 134.8, 133.2, 128.7, 128.4, 128.2, 127.0, 126.4, 126.3, 124.4, 123.7, 123.2, 177.1, 95.3, 82.9, 28.3, 15.5. HRMS m/z (ESI) calcd for C₂₃H₂₃N₂O₂ [M+H]⁺ 359.1754, found 359.1754.

ethyl 2-phenyl-5-propylpyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3ad):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3ad** (60 mg, 84% yield) as white solid. Melting point: 67-69°C.

 $\frac{c_{O_2Et}}{1 + NMR} = 1.49 \text{ (m, 3H)}, 1.18 - 1.14 \text{ (m, 3H)}, 1.$

139.8, 139.4, 133.1, 128.7, 128.4, 128.1, 127.0, 126.4, 126.2, 124.6, 123.6, 123.2, 115.5, 95.1, 61.6, 31.6, 21.1, 14.3. HRMS m/z (ESI) calcd for C₂₃H₂₃N₂O₂ [M+H]⁺ 359.1754, found 359.1753.

benzyl 5-methyl-2-phenylpyrazolo[5,1-a]isoquinoline-6-carboxylate (3ae):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3ae** (77 mg, 99% yield) as white solid. Melting point 143-145°C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.3 Hz, 3H), 7.82 - 7.71 (m, 1H), 7.57 - 7.36 (m, 10H), 7.30 (s, 1H), 5.55 (s, 2H), 2.89 (s, 3H).¹³C NMR (100 MHz, CDCl₃)

δ 167.4, 153.3, 139.7, 136.1, 135.2, 133.0, 128.7, 128.6, 128.5, 128.5, 128.3, 128.1, 127.0, 126.4, 126.1, 124.5, 123.6, 123.0, 115.2, 95.4, 67.5, 15.8. HRMS m/z (ESI) calcd for $C_{26}H_{21}N_2O_2$ [M+H]⁺ 393.1598, found 393.1597.

(2,5-diphenylpyrazolo[5,1-*a*]isoquinolin-6-yl)(phenyl) methanone (3af):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3af** (55 mg, 65% yield) as white solid. Melting point 195-197°C.

 $\frac{1}{100} = 1 \text{H NMR (400 MHz, CDCl_3) } \delta 8.23 \text{ (d, } J = 7.7 \text{ Hz, 1H}\text{), } 7.94 - 7.92 \text{ (m, 2H}\text{), } 7.73 - 7.72 \text{ (m, 2H), } 7.60 - 7.57 \text{ (m, 4H), } 7.51 - 7.43 \text{ (m, 2H), } 7.43 - 7.37 \text{ (m, 3H), } 7.36 - 7.25 \text{ (m, 6H).} ^{13}\text{C}$

128.6, 128.4, 128.3, 127.9, 127.3, 126.4, 125.5, 123.9, 122.2, 95.3. HRMS m/z (ESI) calcd for $C_{30}H_{21}N_2O [M+H]^+ 425.1648$, found 425.1648.

NMR (100 MHz, CDCl₃) δ 196.3, 153.3, 140.3, 137.8, 136.3, 133.4, 133.0, 131.4, 130.9, 129.5, 129.3,

1-(5-methyl-2-phenylpyrazolo [5,1-*a*]isoquinolin-6-yl)ethan-1-one (3ag):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3ag** (45 mg, 60% yield) as white solid. Melting point 138-140°C.

¹H NMR (400 MHz, CDCl₃) δ 8.19 - 8.10 (m, 1H), 8.04 (d, *J* = 7.9 Hz, 2H), 7.60 - 7.44 (m, 5H), 7.39 (d, *J* = 7.1 Hz, 1H), 7.34 (s, 1H), 2.81 (s, 3H), 2.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.4, 153.3, 139.7, 133.2, 132.3, 128.9, 128.6, 128.4, 127.3, 126.5, 125.8, 124.2, 124.1, 123.8, 123.5, 95.5, 33.4, 15.4. HRMS m/z (ESI) calcd for C₂₀H₁₇N₂O [M+H]⁺ 301.1335, found 301.1338.

(5-methyl-2-phenylpyrazolo [5,1-a]isoquinolin-6-yl) (phenyl) methanone (3ah):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3ah** (83 mg, 92% yield) as white solid. Melting point 205-207°C.

¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 7.9 Hz, 1H), 8.08 - 8.06 (m, 2H), 7.98 - 7.93 (m, 2H), 7.66 - 7.58 (m, 1H), 7.56 - 7.52 (m, 1H), 7.48 (q, *J* = 7.2 Hz, 4H), 7.43 - 7.38 (m, 4H), 2.70 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 153.1, 139.8, 137.6, 134.2, 133.7, 133.2, 129.9, 129.0, 128.8, 128.5, 128.2, 127.2, 126.4, 125.0, 123.8, 123.3, 120.7, 95.5, 15.8. HRMS m/z (ESI) calcd for C₂₅H₁₉N₂O [M+H]⁺ 363.1492, found 363.1490.

methyl 5,8-dimethyl-2-phenylpyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3bb) methyl 5-methyl-2-(*p*-tolyl) pyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3bb`):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3bb+3bb**` (78 mg, 97% yield, **3bb:3bb**`= 1:1) as white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.05 - 7.97 (m, 3H), 7.91 - 7.88 (m, 3H), 7.76 - 7.71 (m, 1H), 7.51 - 7.41 (m, 5H), 7.39 - 7.32 (m, 1H), 7.30 - 7.21 (m, 4H),

7.19 (s, 1H), 4.03 - 4.02 (m, 6H), 2.86 - 2.84 (m, 6H), 2.44 (s, 3H), 2.38 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 168.2, 168.1, 153.4, 153.2, 139.8, 139.7, 138.3, 138.2, 136.2, 135.9, 133.1, 130.1, 129.4, 128.6, 128.6, 128.4, 128.0, 126.9, 126.3, 126.2, 126.1, 126.0, 124.5, 124.1, 123.6, 123.5, 120.7, 115.1, 115.0, 95.2, 94.9, 52.4, 21.9, 21.3, 15.9. HRMS m/z (ESI) calcd for C₂₁H₁₉N₂O₂ [M+H]⁺ 331.1441, found 331.1439.

methyl 2,5-dimethylpyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3cb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3cb** (54 mg, 85% yield) as white solid. Melting point 83-85°C.

 $\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

methyl 2,5,8-trimethylpyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3db):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3db** (53 mg, 99% yield) as white solid. Melting point 95-97°C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.2 Hz, 1H), 7.50 (s, 1H), 7.31 (d, *J* = 8.0 Hz,

1H), 6.74 (s, 1H), 4.04 (s, 3H), 2.81 (s, 3H), 2.53 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 151.7, 139.5, 138.1, 135.5, 128.5, 126.2, 124.1, 123.5, 120.5, 114.3, 97.6, 52.4, 21.9, 16.0, 14.2. HRMS m/z (ESI) calcd for C₁₆H₁₇N₂O₂ [M+H]⁺ 269.1285, found 269.1288.

methyl 8-methoxy-2,5-dimethylpyrazolo[5,1-a]isoquinoline-6-carboxylate (3eb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3eb** (47 mg, 85% yield) as white solid. Melting point 104-106°C.

¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.8 Hz, 1H), 7.17 (s, 1H), 7.08 (d, J = 8.8

Hz, 1H), 6.65 (s, 1H), 4.02 (s, 3H), 3.87 (s, 3H), 2.81 (s, 3H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 159.3, 151.9, 139.5, 136.5, 127.6, 125.1, 116.8, 116.4, 113.8, 106.0, 97.0, 55.3, 52.3, 16.1, 14.1. HRMS m/z (ESI) calcd for C₁₆H₁₇N₂O₃ [M+H]⁺ 285.1234, found 285.1237.

methyl 8-chloro-2,5-dimethylpyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3fb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3fb** (45 mg, 79% yield) as white solid. Melting point 145-147°C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 1H), 7.72 (s, 1H), 7.37 (d, J = 8.6

Hz, 1H), 6.70 (s, 1H), 4.03 (s, 3H), 2.79 (s, 3H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 152.1, 138.7, 137.4, 133.9, 127.2, 127.2, 124.8, 124.0, 120.9, 113.2, 98.4, 52.5, 16.1, 14.1. HRMS m/z (ESI) calcd for C₁₅H₁₄ClN₂O₂ [M+H]⁺ 289.0738, found 289.0735.

methyl 8-bromo-2,5-dimethylpyrazolo[5,1-a]isoquinoline-6-carboxylate (3gb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3gb** (60 mg, 91% yield) as white solid. Melting point 155-157°C.

¹H NMR (400 MHz, CDCl₃) δ 7.90 - 7.89 (m, 1H), 7.77 (d, J = 8.6 Hz, 1H), 7.54 -

7.52 (m, 1H), 6.73 (s, 1H), 4.04 (s, 3H), 2.81 (s, 3H), 2.52 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 167.7,

152.3, 138.9, 137.5, 130.1, 127.6, 127.2, 125.1, 122.3, 121.4, 113.3, 98.6, 52.8, 16.3, 14.3. HRMS m/z (ESI) calcd for $C_{15}H_{14}BrN_2O_2$ [M+H]⁺ 333.0233, found 333.0231.

methyl 8-iodo-2,5-dimethylpyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3hb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3hb** (66 mg, 87% yield) as white solid. Melting point 155-157°C.

¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 8.3 Hz, 1H), 6.74 (s, 1H), 4.04 (s, 3H), 2.80 (s, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 152.1, 138.8, 137.1, 135.5, 133.2, 127.6, 124.8, 121.6, 113.0, 98.5, 93.8, 52.6, 16.1, 14.2. HRMS m/z (ESI) calcd for C₁₅H₁₄IN₂O₂ [M+H]⁺ 381.0095, found 381.0096.

methyl 8-fluoro-2,5-dimethylpyrazolo[5,1-a]isoquinoline-6-carboxylate (3ib):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3ib** (52 mg, 96% yield) as white solid. Melting point 81-83°C.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.47 (d, *J* = 10.3 Hz, 1H), 7.21 (s, 1H), 6.72 (s, 1H), 4.04 (s, 3H), 2.83 (s, 3H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 162.0 (d, *J* = 246.9 Hz), 152.2, 139.0, 137.6, 127.8 (d, *J* = 9.5 Hz), 125.7 (d, *J* = 9.1 Hz), 119.3, 115.6 (d, *J* = 23.9 Hz), 113.5 (d, *J* = 3.4 Hz), 110.1 (d, *J* = 24.0 Hz), 98.0, 52.5, 16.2, 14.1. HRMS m/z (ESI) calcd for C₁₅H₁₄FN₂O₂ [M+H]⁺ 272.0961, found 272.0960.

methyl 2,5-dimethyl-8-(trifluoromethyl)pyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3jb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3jb** (58 mg, 91% yield) as white solid. Melting point 103-105°C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 8.3

Hz, 1H), 6.83 (s, 1H), 4.06 (s, 3H), 2.83 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 152.3, 138.4, 137.9, 129.6 (q, *J* = 32.4 Hz), 125.8, 124.6, 124.2, 123.9 (q, *J* = 272.3 Hz), 123.0, 122.1 (d, *J* = 4.3 Hz), 113.8, 99.4, 52.6, 16.1, 14.1. HRMS m/z (ESI) calcd for C₁₆H₁₄F₃N₂O₂ [M+H]⁺ 323.1002, found 323.1001.

methyl 10-chloro-2,5-dimethylpyrazolo[5,1-a]isoquinoline-6-carboxylate (3kb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3kb** (52 mg, 91% yield) as white solid. Melting point 126-128°C.

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 1H), 7.56 - 7.53 (m, 2H), 7.38 (t, J

= 8.0 Hz, 1H), 4.03 (s, 3H), 2.80 (s, 3H), 2.55 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 168.1, 151.5, 136.4, 136.3, 130.4, 128.8, 128.4, 127.6, 123.0, 121.1, 114.5, 104.4, 52.6, 16.3, 14.1. HRMS m/z (ESI) calcd for C₁₅H₁₄ClN₂O₂ [M+H]⁺ 289.0738, found 289.0735.

methyl 2,5,10-trimethylpyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3lb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3lb** (43 mg, 81% yield) as white solid. Melting point 96-98°C.

 $\frac{1}{100} = \frac{1}{100} = \frac{1}$

methyl 2,5,9-trimethylpyrazolo[5,1-*a*]isoquinoline-6-carboxylate (3mb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3mb** (41 mg, 77% yield) as white solid. Melting point 96-98°C.

¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.65 (d, J = 8.3 Hz, 1H), 7.34 (d, J = 8.4

Hz, 1H), 6.79 (s, 1H), 4.03 (s, 3H), 2.82 (s, 3H), 2.54 (s, 3H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 151.6, 139.3, 136.9, 135.0, 129.7, 124.4, 123.9, 123.3, 122.8, 114.3, 98.0, 52.4, 21.5, 15.9, 14.2. HRMS m/z (ESI) calcd for C₁₆H₁₇N₂O₂ [M+H]⁺ 269.1285, found 269.1282.

methyl 9-methoxy-2,5-dimethylpyrazolo[5,1-a]isoquinoline-6-carboxylate (3nb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3nb** (15 mg, 25% yield) as white solid. Melting point 116-118°C.

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 6.7 Hz, 1H), 7.39 (s, 1H), 7.15 (d, J = 9.1

Hz, 1H), 6.80 (s, 1H), 4.03 (s, 3H), 3.94 (s, 3H), 2.82 (s, 3H), 2.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 158.4, 151.5, 139.2, 133.8, 126.3, 124.0, 120.3, 117.8, 114.3, 104.8, 98.1, 55.5, 52.5, 15.9, 14.2. HRMS m/z (ESI) calcd for C₁₆H₁₇N₂O₃ [M+H]⁺ 285.1234, found 285.1233.

methyl 7-methoxy-2,5-dimethylpyrazolo[5,1-a]isoquinoline-6-carboxylate (3nb`):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3nb**` (42 mg, 74% yield) as white solid. Melting point 73-75°C.

 $\int_{Me} \int_{O_2Me} \int_{1}^{1} H NMR (400 \text{ MHz, CDCl}_3) \delta 7.64 (d, J = 8.1 \text{ Hz, 1H}), 7.45 (t, J = 8.9 \text{ Hz, 1H}), 6.96 (d, J = 7.9 \text{ Hz, 1H}), 6.80 (s, 1H), 3.98 (s, 3H), 3.93 (s, 3H), 2.74 (s, 3H), 2.54 (s, 3H). {}^{13}C NMR (100 \text{ MHz, CDCl}_3) \delta 169.8, 154.1, 151.4, 138.8, 133.4, 127.8, 124.2, 116.9, 116.4, 112.3, 108.9, 98.3, 56.6, 52.5, 15.2, 14.2. HRMS m/z (ESI) calcd for <math>C_{16}H_{17}N_2O_3$ [M+H]⁺ 285.1234, found 285.1230. methyl 2,5-dimethylpyrazolo[1,5-*a*] thieno [3,2-c]pyridine-6-carboxylate (3ob):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give 3ob (51 mg, 99% yield) as white solid. Melting point 138-140°C.

 ^{1}H NMR (400 MHz, CDCl_3) δ 7.63 (s, 1H), 7.46 (s, 1H), 6.48 (s, 1H), 4.01 (s, 3H), 3.00

(s, 3H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 153.0, 138.4, 137.0, 132.5, 125.9, 125.5, 125.0, 110.6, 96.2, 52.1, 16.1, 14.2. HRMS m/z (ESI) calcd for C₁₃H₁₃N₂O₂S [M+H]⁺ 261.0692, found 261.0692.

2-methyl-10, 11-dihydropyrazolo [1, 5-f] phenanthridin-8(9H)-one (3ci):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 20:1) give **3ci** (44 mg, 88% yield) as white solid. Melting point 105-107°C.

¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 7.94 (s, 1H), 7.56 - 7.48 (m, 2H), 6.76 (s, 1H), 3.48 (m, 2H), 2.75 (m, 2H), 2.53 (m, 3H), 2.26 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.3, 153.8, 148.0, 140.5, 128.9, 127.0, 126.9, 126.3, 123.2, 122.6, 113.5, 99.2, 39.7, 25.9, 20.8, 14.2. HRMS m/z (ESI) calcd for C₁₆H₁₅N₂O [M+H]⁺ 250.1106, found 250.1105.

ethyl (E)-2-(2-(1H-benzo[d]imidazol-2-yl)phenyl)-3-hydroxybut-2-enoate (4a):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **4a** (61 mg, 95% yield) as white solid. Melting point 193-195°C.

¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 7.2 Hz, 1H), 8.09 - 7.99 (m, 1H), 7.79 (d, *J* = 8.7 Hz, 1H), 7.48 - 7.41 (m, 3H), 7.32 - 7.19 (m, 2H), 4.15 - 3.91 (m, 3H), 1.61 (s, 3H), 1.07 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 147.7, 144.2, 133.7, 130.9, 130.3, 130.2, 129.1, 126.0, 125.3, 123.2, 122.6, 119.6, 113.4, 87.3, 62.2, 55.3, 26.6, 13.7. HRMS m/z (ESI) calcd for C₁₉H₁₈N₂O₃ [M+H]⁺ 323.1390, found 323.1389.

ethyl 6-methylbenzo[4,5]imidazo[2,1-*a*]isoquinoline-5-carboxylate (3pa):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3pa** (38 mg, 63% yield) as white solid. Melting point 175-177°C.

¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, J = 6.8 Hz, 1H), 8.17 - 7.96 (m, 2H), 7.69 -

7.64 (m, 3H), 7.50 (t, J = 7.3 Hz, 1H), 7.34 (t, J = 7.3 Hz, 1H), 4.57 (q, J = 6.6 Hz, 2H), 3.06 (s, 3H), 1.49 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 147.3, 143.8, 134.6, 131.3, 130.5, 128.7, 127.8, 125.3, 124.9, 124.0, 122.3, 121.6, 120.0, 116.5, 114.5, 62.0, 19.2, 14.3. HRMS m/z (ESI) calcd for C₁₉H₁₇N₂O₂ [M+H]⁺ 304.1212, found 304.1213.

tert-butyl 6-methylbenzo[4,5] imidazo [2,1-*a*]isoquinoline-5-carboxylate (3pc):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3pc** (50 mg, 76% yield) as white solid. Melting point 180-182°C.

¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, *J* = 7.0 Hz, 1H), 8.12 - 7.91 (m, 2H), 7.77 - 7.59 (m, 3H), 7.47 (t, *J* = 6.5 Hz, 1H), 7.31 (d, *J* = 6.9 Hz, 1H), 3.05 (s, 3H), 1.72 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 147.6, 144.5, 133.7, 131.6, 130.4, 128.9, 127.7, 125.3, 124.7, 123.9, 122.1, 120.2, 117.7, 115.4, 114.5, 83.3, 28.4, 19.0. HRMS m/z (ESI) calcd for C₂₁H₂₁N₂O₂ [M+H]⁺ 332.1525, found 332.1528.

ethyl 6-propylbenzo[4,5] imidazo [2,1-*a*]isoquinoline-5-carboxylate (3pd):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3pd** (20 mg, 30% yield) as white solid. Melting point 181-183°C. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, J = 8.1 Hz, 1H), 8.05 (d, J = 7.9 Hz, 1H), 7.89

(d, J = 8.2 Hz, 1H), 7.72 - 7.61 (m, 3H), 7.54 (t, J = 7.6 Hz, 1H), 7.42 (t, J = 7.1 Hz, 1H), 4.57 (q, J = 7.1 Hz, 2H), 3.40 - 3.21 (m, 2H), 2.10 - 1.85 (m, 2H), 1.50 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 147.9, 144.5, 138.0, 130.7, 130.4, 128.7, 127.8, 125.3, 124.7, 124.0, 122.5, 122.1, 120.3, 116.4, 114.1, 62.0, 33.0, 21.4, 14.3, 13.8. HRMS m/z (ESI) calcd for C₂₁H₂₁N₂O₂ [M+H]⁺ 332.1525, found 332.1524.

(6-methylbenzo [4,5] imidazo[2,1-*a*]isoquinolin-5-yl)(phenyl)methanone (3ph):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3ph** (26 mg, 39% yield) as white solid. Melting point 185-187°C.

¹H NMR (400 MHz, CDCl₃) δ 8.93 (d, *J* = 8.0 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.98 (d, *J* = 7.8 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 2H), 7.56 (t, *J* = 7.8 Hz, 2H), 7.49 (t, *J* = 7.2 Hz, 2H), 7.44 - 7.34 (m, 2H), 2.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 147.7, 144.4, 137.4, 134.5, 132.7, 131.6, 130.3, 129.9, 129.7, 129.1, 127.8, 125.3, 124.8, 124.5, 122.2, 122.1, 120.8, 120.2, 114.4, 19.2. HRMS m/z (ESI) calcd for C₂₃H₁₇N₂O [M+H]⁺ 336.1263, found 336.1257.

ethyl 3-chloro-6-methylbenzo[4,5]imidazo[2,1-*a*]isoquinoline-5-carboxylate (3qa):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3qa** (58 mg, 85% yield) as white solid. Melting point 174-176°C.

¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 8.6 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H),

7.98 (d, J = 8.1 Hz, 1H), 7.70 (s, 1H), 7.57 (d, J = 8.6 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H), 4.57 (q, J = 7.1 Hz, 2H), 3.06 (s, 3H), 1.50 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

167.1, 146.9, 144.4, 136.6, 136.4, 131.4, 129.7, 128.2, 126.7, 125.0, 123.7, 122.4, 120.2, 120.2, 115.0, 114.5, 62.2, 19.3, 14.3. HRMS m/z (ESI) calcd for $C_{19}H_{16}CIN_2O_2$ [M+H]⁺ 338.0822, found 338.0824.

tert-butyl 3-chloro-6-methylbenzo[4,5]imidazo[2,1-a]isoquinoline-5-carboxylate (3qc):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3qc** (59 mg, 80% yield) as white solid. Melting point 181-183°C.

¹H NMR (600 MHz, CDCl₃) δ 8.71 (d, *J* = 8.6 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.70 (s, 1H), 7.55 (d, *J* = 8.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.3 Hz, 1H), 3.05 (s, 3H), 1.72 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 146.8, 144.3, 136.4, 135.3, 131.4, 129.8, 128.0, 126.6, 124.8, 123.5, 122.2, 120.2, 120.0, 116.4, 114.4, 83.5, 28.2, 18.9. HRMS m/z (ESI) calcd for C₂₁H₂₀ClN₂O₂ [M+H]⁺ 366.1135, found 366.1140.

ethyl 6-methyl-3-(trifluoromethyl)benzo[4,5]imidazo[2,1-a]isoquinoline-5-carboxylate (3ra):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3ra** (64 mg, 86% yield) as white solid. Melting point 193-195°C. ¹H NMR (600 MHz, CDCl₃) δ 8.90 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H),

8.01-7.99 (m, 2H), 7.82 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.38 (t, J = 8.2 Hz, 1H), 4.59 (q, J = 7.2 Hz, 2H), 3.08 (s, 3H), 1.51 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.0, 146.3, 144.4, 136.9, 131.8 (q, J = 32.9 Hz), 131.5, 128.3, 126.0, 125.8 (q, J = 328.3 Hz), 125.2, 124.1, 123.8, 122.9, 121.6 (q, J = 4.0 Hz), 120.5, 115.5, 114.7, 62.3, 19.3, 14.2. HRMS m/z (ESI) calcd for C₂₀H₁₆F₃N₂O₂ [M+H]⁺ 372.1086, found 372.1090.

methyl 6-methyl-3-(trifluoromethyl)benzo[4,5]imidazo[2,1-a]isoquinoline-5-carboxylate (3rb):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3rb** (59 mg, 86% yield) as white solid. Melting point 160-162°C.

¹H NMR (600 MHz, CDCl₃) δ 8.91 (d, J = 8.3 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H),

8.01 (d, J = 8.1 Hz, 1H), 7.96 (s, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 4.10 (s, 3H), 3.06 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.5, 146.2, 144.3, 137.1, 131.8 (q, J = 32.7 Hz), 131.4, 128.3, 126.0, 125.2, 124.0, 123.8, 123.8 (q, J = 272.6 Hz), 122.9, 121.5 (q, J = 3.7 Hz), 120.5, 115.2, 114.7, 53.0, 19.4. HRMS m/z (ESI) calcd for C₁₉H₁₄F₃N₂O₂ [M+H]⁺ 358.0929, found 358.0930.

ethyl 5-methyl-2-phenyl-[1,2,4]triazolo[5,1-*a*]isoquinoline-6-carboxylate (3sa):

Flash column chromatography on a silica gel (petroleum ether: ethyl acetate = 10:1) give **3sa** (34 mg, 51% yield) as white solid. Melting point 110-112°C. ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 7.3 Hz, 1H), 8.38 (d, J = 6.8 Hz, 2H), 7.91

(d, J = 7.5 Hz, 1H), 7.72 (p, J = 7.1 Hz, 2H), 7.58 - 7.42 (m, 3H), 4.58 (q, J = 7.1 Hz, 2H), 2.96 (s, 3H), 1.50 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 163.4, 150.1, 134.8, 130.8, 130.4, 130.0, 128.8, 128.7, 127.8, 127.3, 124.6, 124.6, 120.7, 117.4, 62.1, 15.9, 14.3. HRMS m/z (ESI) calcd for $C_{20}H_{18}N_3O_2$ [M+H]⁺ 331.1321, found 331.1322.

3. References

[1] C. Wiles, P. Watts, S. J. Haswell and E. Pombo-Villar, Org. Process Res. Dev., 2004, 8, 28.

[2] a) F. Ye, C. Wang, Y. Zhang and J. Wang, *Angew. Chem. Int. Ed.*, 2014, **53**, 11625.

b) Wang J, Wang M, Chen K, Zha S, Song C, Zhu J. Org. Lett. 2016, **18**, 1178.

[3] H. Xu, Y. Jiang and H. Fu, *Synlett*, 2013, **24**, 125.

[4] T. Yamashita, S. Yamada, Y. Yamazaki and H. Tanaka, Synth. Commun., 2009, 39, 2982.

[5] K.-i. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto and R. Yamaguchi, Org. Lett., 2004, 6, 2785.

4. NMR Spectra

^{13}C NMR spectrum (100 MHz, CDCl₃) of 3aa

¹H NMR spectrum (400 MHz, CDCl₃) of 3ad

¹H NMR spectrum (400 MHz, CDCl₃) of 3af

8.24 8.22 8.22 7.92 7.73 7.73 7.73 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.42 7.42 7.42 7.42 7.33 7.33 7.33 7.25 7.25

¹H NMR spectrum (400 MHz, CDCl₃) of 3ah — 2.70 COPh 4.05 -80.0 1.00-2.07-2.07-8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.0 0.5 0.0 1.5 ^{13}C NMR spectrum (100 MHz, CDCl₃) of 3ah 153.13 139.79 137.55 137.55 133.68 133.68 133.68 133.68 133.68 133.68 133.68 1128.48 128.48 128.48 128.48 128.48 128.48 128.48 127.45 1 — 196.72 - 95.45 — 15.81 ĊOPh

90 80 70 60 50 40 30 20 10 0

160 150 140 130 120 110 100 f1 (ppm)

210 200 190 180 170

¹H NMR spectrum (400 MHz, CDCl₃) of 3eb

¹H NMR spectrum (400 MHz, CDCl₃) of 3hb

¹H NMR spectrum (400 MHz, CDCl₃) of 3ib

¹H NMR spectrum (400 MHz, CDCl₃) of 3mb $\begin{array}{c} \begin{array}{c} & 7.80 \\ \hline & 7.66 \\ \hline & 7.64 \\ \hline & 7.35 \\ \hline & 7.33 \end{array}$ --- 4.03 - 6.79 -- 2.82 2.54 2.50 CO₂Me 40.00 3.08-3.08 2.96 -00.1 8 9 4.5 4.0 f1 (ppm) 2.5 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.5 3. 0 2.0 1.5 1.0 0.5 0.0 ^{13}C NMR spectrum (100 MHz, CDCl_3) of 3mb - 151.62 76.79 — — 52.41 -- 21.48 -- 15.93 -- 14.18 CO₂Me 100 90 80 f1 (ppm) 70 180 170 160 150 140 130 120 110 60 50 40 30 20 10 0

¹H NMR spectrum (400 MHz, CDCl₃) of 3nb

¹H NMR spectrum (400 MHz, CDCl₃) of 3nb`

¹H NMR spectrum (400 MHz, CDCl₃) of 3ob

^1H NMR spectrum (400 MHz, CDCl_3) of 3ci

^1H NMR spectrum (400 MHz, CDCl₃) of 4a

¹H NMR spectrum (400 MHz, CDCl₃) of 3pa

¹H NMR spectrum (400 MHz, CDCl₃) of 3ph

¹H NMR spectrum (600 MHz, CDCl₃) of 3rb

