Supporting Information

Perylene Dye-Functionalized Silver Nanoparticles Serving as pH-Dependent Metal Sensor Systems

Yan Sun*, Tongfei Zuo, Fang Guo, Jing Sun, Ziwei Liu, and Guowang Diao*

College of Chemistry and Chemical Engineering, Yangzhou University, 225002

E-mail: sunyan@yzu.edu.cn, gwdiao@yzu.edu.cn

1.	Figure S1	S 2
2.	Figure S2	S 3
3.	Figure S3	S4
4.	Figure S4	S 5
5.	Figure S5	S6
6.	Figure S6	S7
7.	Figure S7	S8
8.	Figure S8	S 9
9.	Figure	
	\$9	
10).Figure S	510.
11	.Figure S	511.

12. Figure	S12 .
13.Figure	S13 .

UV-vis spectra sample preparation

AgNO₃ (0.5 mL, 10 mM) was added into the solution of LPL (20.0 mL, 7.5 μ M) at given pH (12.6, 12.0, 11.0, and 10.0). Subsequently, a fresh NaBH₄ solution (0.5 mL, 0.1 M) was added into the solution with rapid stirring.

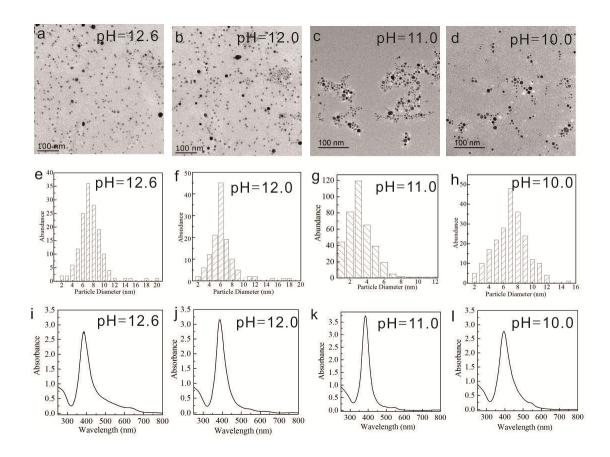


Figure S1. TEM images of the LPL-AgNPs at pH (a) 12.6, (b) 12.0, (c) 11.0, and (d) 10.0. (e)-(h)

Histograms of the size distribution and (i)-(j) corresponding UV-vis spectra.

UV-vis spectra sample preparation

2.8 mL LPL (7.5 μ M, pH=12.6) and 0.7 mL metal ions (10 μ M, pH=7) were mixed for 20 min, then the UV-vis spectra were recorded.

2.8 mL LPL (7.5 μ M, pH=12.0) and 0.7 mL metal ions (50 μ M, pH=7) were mixed for 20 min, then the UV-vis spectra were recorded.

2.8 mL LPL (7.5 μ M, pH=11.0) and 0.7 mL metal ions (10 μ M, pH=7) were mixed for 20 min, then the UV-vis spectra were recorded.

2.8 mL LPL (7.5 μ M, pH=12.0) and 0.7 mL metal ions (0.5 μ M, pH=7) were mixed for 20 min, then the UV-vis spectra were recorded.

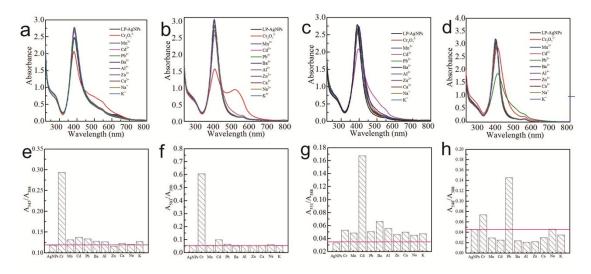
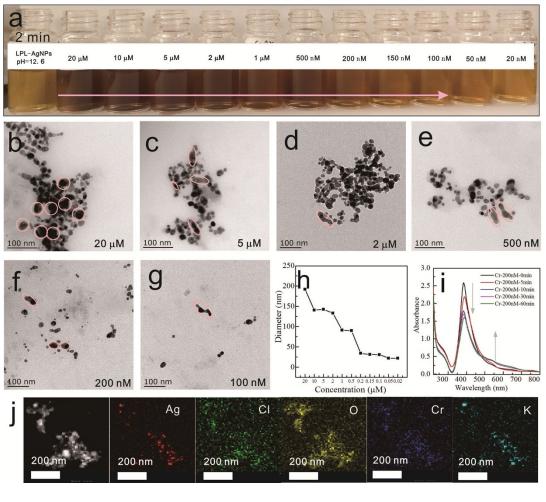



Figure S2. (a) UV-vis spectra of the LPL-AgNPs after the addition of different metal ions

(100 nM) at pH=12.6, (b) UV-vis spectra of the LPL-AgNPs after the addition of different metal ions (2 μ M) at pH=12.0 (c) UV-vis spectra of the LPL-AgNPs after the addition of different metal ions (10 μ M) at pH=11.0 (d) UV-vis spectra of LPL-AgNPs after the addition of different metal ions (2 μ M) at pH=10.0 (e) Corresponding values of A₅₄₅ /A₃₈₄ (pH=12.6), (f) values of A₅₀₃ /A₃₉₀ (pH=12.0), (i) values of A₅₅₁/A₃₈₈ (pH=11.0), (i) values of A₅₅₁/A₃₈₈ (pH=10.0).

UV-vis spectra sample preparation

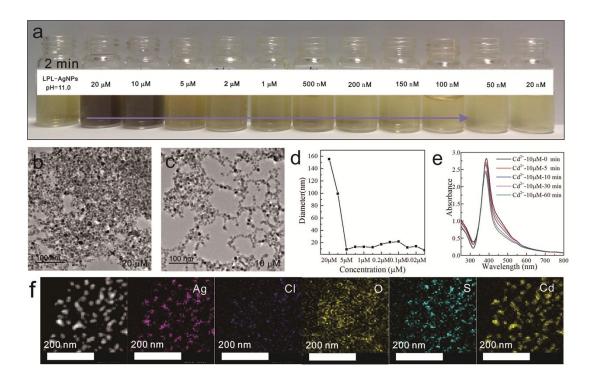

2.4 mL LPL (7.5 μ M, pH=12.6) and 0.6 mL metal ions (100 μ M, pH=7) were mixed, then the UV-vis spectra evolution were recorded.

Figure S3. (a) Digital image of LPL-AgNPs interacting with different concentrations of Cr^{6+} . (b)-(g) TEM images of the LPL-AgNPs after interacting with Cr^{6+} at concentrations of 10 μ M, 2 \Box M, 200 nM, and 100 nM. (h) Evolution of the diameter of the LPL-AgNPs. (i) UV-vis spectra of the LPL-AgNPs with time. (j) Left: STEM image of the LPL-AgNPs -Cr⁶⁺. Right: The corresponding mapping images.

UV-vis spectra sample preparation

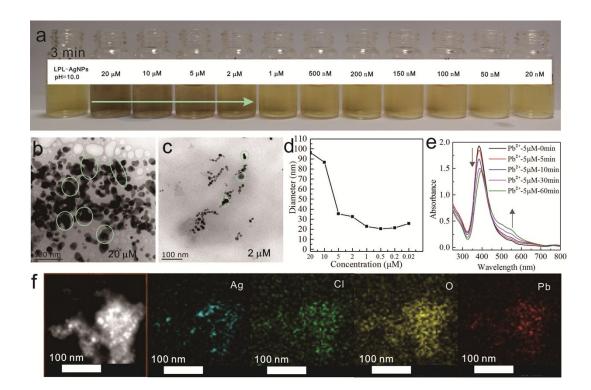

2.4 mL LPL (7.5 μ M, pH=11.0) and 0.6 mL metal ions (100 μ M, pH=7) were mixed, then the UV-vis spectra evolution were recorded.

Figure S4. (a) Digital image of LPL-AgNPs interacting with Cd^{2+} . (b-c) TEM images of the LPL-AgNPs after interacting with Cd^{2+} at concentrations of 20 µM and 10 µM. (d) Evolution of the diameter of the LPL-AgNPs. (e) UV-vis spectra of the LPL-AgNPs with time. (f) Left: STEM image of the LPL-AgNPs-Cd²⁺. Right: The corresponding mapping images.

UV-vis spectra sample preparation

2.4 mL LPL (7.5 μ M, pH= 10.0) and 0.6 mL metal ions (100 μ M, pH=7) were mixed, then the UV-vis spectra evolution were recorded.

Figure S5. (a) Digital image of LPL-AgNPs interacting with different concentrations of Pb²⁺. (b)-(c) TEM images of LPL-AgNPs after interacting with Pb²⁺ at the concentrations of 20 μ M and 2 μ M. (d) Evolution of the diameter of the LPL-AgNPs with the concentration. (e) UV-vis spectra of LPL-AgNPs with time. (f) Left: STEM image of the LPL-AgNPs-Pb²⁺. Right: The corresponding mapping images.

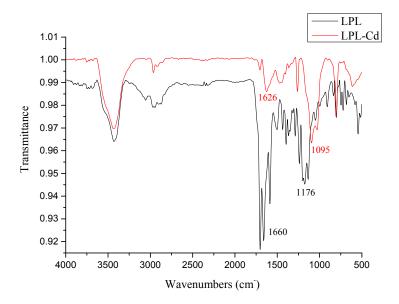
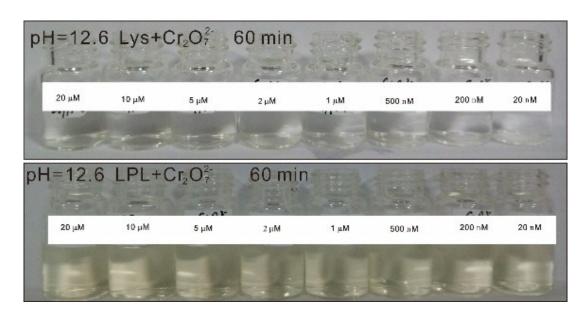
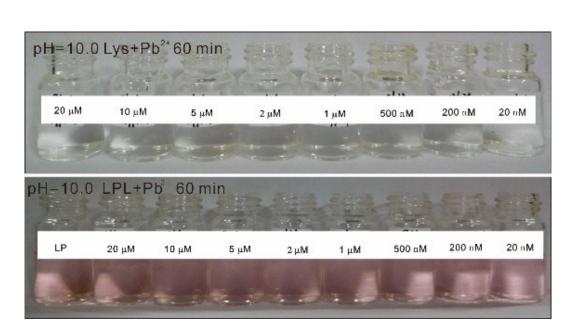
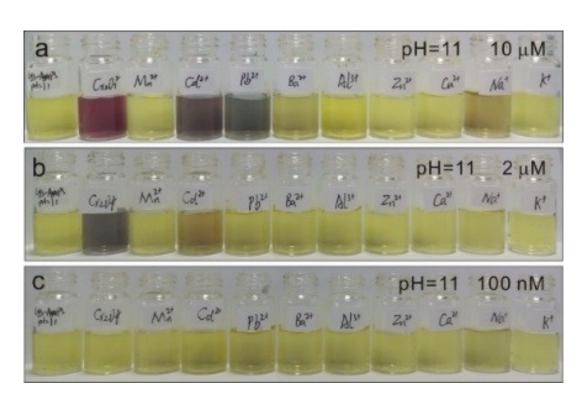



Figure S6. FT-IR spectra of LPL before and after the addition of Cd2⁺.


Figure S7. (Top) Digital image of the Lys interactions with different concentrations of $Cr_2O_7^{2-}$ (pH=12.6). (Bottom) Digital image of the LPL interactions with different concentrations of $Cr_2O_7^{2-}$ (pH=12.6).

Lys	20 μM	10 µM	5 μM	2 µM	1 μM	500 nM	200 nM	20 n
			- 1					
	-							
I=12.0	LPL+C	r ₂ O ₇ ²⁻ 6	0 min	-	2.75	Destant.	-Era	
1.	-	-		A de mar	an and		-	-
LP	20 μM	10 µM	5 μM	2 μM	1 µM	500 n M	200 nM	20 1
LF	20 μ	io µm	эμм	2 μΜ		500 nM	200 ли	201


Figure S8. (Top) Digital image of the Lys interactions with different concentrations of $Cr_2O_7^{2-}$ (pH=12.0). (Bottom) Digital image of the LPL interactions with different concentrations of $Cr_2O_7^{2-}$ (pH=12.0).

-	and and	- 124	-	- Lu			-	-
Lys	40 µM	10 µM	5 µM	2 μΜ	1 µМ	500 nM	200 nM	20 nM
-					~	~	-	
H=11.	0 LPL+	+Cd ²⁺ 6	0 min					
	and the second s	- (1)		and the	-			1000
LP	20 µM	10 µM	5 μΜ	2 μΜ	1 μΜ	500 nM	200 nM	20 n N
	20 µM	10 µM	5 µM	2 µM	1 μM	500 nM	200 nM	20 r

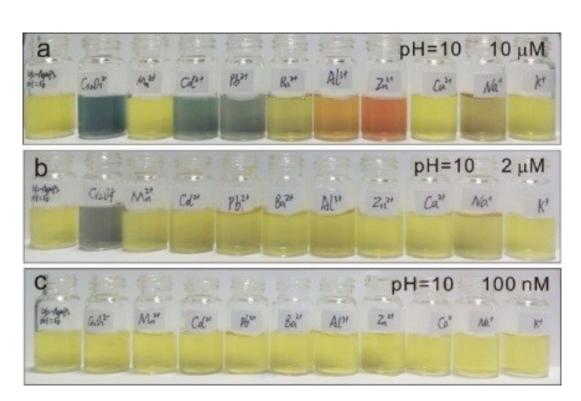
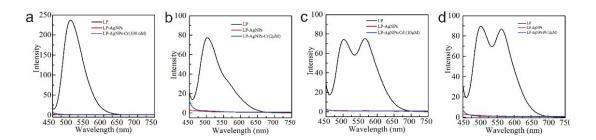

Figure S9. (Top) Digital image of Lys interactions with different concentrations of Cd^{2+} (pH=11.0). (Bottom) Digital image of the LPL interactions with different concentrations of Cd^{2+} (pH=11.0).

Figure S10. (Top) Digital image of the Lys with different concentrations of Pb^{2+} (pH=10.0). (Bottom) Digital image of the LPL interactions with different concentrations of Pb^{2+} (pH=10.0).

Figure S11. Digital images of the lysine-AgNPs with different metal ions at pH=11.0 with concentrations of (a) 10 μ M, (b) 2 μ M, and (c) 100 nM.

Figure S12. Digital images of the lysine-AgNPs with different metal ions at pH=10.0 with concentrations of (a) 10 μ M, (b) 2 μ M, and (c) 100 nM.


Fluorescence spectra sample preparation

pH=12.6. LPL-AgNPs-Cr⁶⁺. 1.6mL LPL (7.5 μ M, pH=12.6) and 0.4 mL metal ions (0.5 μ M, pH=7) were mixed, then the fluorescence spectra were recorded. LPL-AgNPs. 1.6mL LPL-AgNPs (pH=12.6) and 0.4 mL water (0.5 μ M, pH=7) were mixed, then the fluorescence spectra were recorded. LPL. 1.6mL LPL (7.5 μ M, pH=12.6) and 0.4 mL water (0.5 μ M, pH=7) were mixed, then the fluorescence spectra were recorded. LPL. 1.6mL LPL (7.5 μ M, pH=12.6) and 0.4 mL water (0.5 μ M, pH=7) were mixed, then the fluorescence spectra were recorded.

pH=12.0. LPL-AgNPs-Cr⁶⁺. 1.6mL LPL (7.5 μ M, pH=12.0) and 0.4 mL metal ions (10 μ M, pH=7) were mixed, then the fluorescence spectra were recorded. LPL-AgNPs. 1.6mL LPL-AgNPs (pH=12) and 0.4 mLwater were mixed, then the fluorescence spectra were recorded. LPL. 1.6mL LPL (7.5 μ M, pH=12) and 0.4 mL water were mixed, then the fluorescence spectra were recorded.

pH=11.0. LPL-AgNPs-Cd²⁺. 1.6mL LPL (7.5 μ M, pH=11.0) and 0.4 mL metal ions (50 μ M, pH=7) were mixed, then the fluorescence spectra were recorded. LPL-AgNPs. 1.6mL LPL-AgNPs (pH=11.0) and 0.4 mL water were mixed, then the fluorescence spectra were recorded. LPL. 1.6mL LPL (7.5 μ M, pH=11.0) and 0.4 mL water were mixed, then the fluorescence spectra were recorded.

pH=10.0. LPL-AgNPs-Pb²⁺. 1.6mL LPL (7.5 μ M, pH=10.0) and 0.4 mL metal ions (10 μ M, pH=7) were mixed, then the fluorescence spectra were recorded. LPL-AgNPs. 1.6mL LPL-AgNPs (pH=10.0) and 0.4 mL water were mixed, then the fluorescence spectra were recorded. LPL. 1.6mL LPL (7.5 μ M, pH=10.0) and 0.4 mL water were mixed, then the fluorescence spectra were recorded.

Figure S13. Fluorescence spectra of the LPL, LPL-AgNPs, and LPL-AgNPs-M at (a) pH=12.6, (b) pH=12.0, (c) pH=11.0, and (d) pH=10.0.

Figure S14. Possible mechanisms of the interactions between the metal ions and LPL-AgNPs. The ratio (>60%, and <40% at pH=11.0) was calculated based on the literature.