Supporting information

Coating of Pd/C catalysts with Lewis-acidic ionic liquids and liquid coordination complexes – SCILL induced activity enhancement in arene hydrogenation

Martin Lijewski¹, James M. Hogg², Małgorzata Swadźba-Kwaśny^{2*}, Peter Wasserscheid¹, Marco Haumann^{1*}

1 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstr. 3, 91058 Erlangen, Germany

2 Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK

Batch autoclave setup

Figure S1. Schematic flow sheet (left) and photograph (right) of the batch reactor utilized.

Figure S2. Photograph of the assembled reactor.

Comparison between addition of AlCl3 and [BMIM]Cl/AlCl₃ in bulk and SCILL

Figure S3 shows the conversion time plots for uncoated Pd/C without and with addition of [BMIM]Cl/AlCl₃ ($x_{AlCl_3} = 0.67$). The amount of ionic liquid added was adjusted to the same amount of AlCl₃ present in a Pd-SCILL-1 system, namely approx. 13 % or 41.3 mg.

Figure S3. Conversion over time for toluene hydrogenation using Pd/C, with 330 mg (open squares), 41.3 mg (open squares intersected) and without (filled squares) addition of AlCl₃, as well as Lewis-acidic chloroaluminate Pd-SCILL-1 catalysts (filled circles). Reaction conditions: T = 60 °C, $p_{hydrogen} = 15$ bar, $c_{toluene} = 0.25$ mol L⁻¹, solvent = 100 mL cyclohexane, $m_{cat} = 1$ g, $w_{Pd} = 10$ wt%, stirring speed = 1000 min⁻¹. Ionic liquid = [BMIM]Cl/AlCl₃ (x_{AlCl3} = 0.67).

Textural analysis of the Pd-SCILL-1 catalyst

The Pd-SCILL-1 catalyst, coated with chloroaluminate ionic liquid, was analyzed by means of N_2 sorption at 77 K on a Quadrasorb-SI from Quantachrome. The data are compiled in Table S1.

Table S1. Textural data for the Pd-SCILL-1 catalyst containing varying amounts of chloroaluminate ionic liquid [BMIM]Cl/AlCl₃ ($x_{A1Cl3} = 0.67$).

Catalyst	Ionic liquid wt%	Surface area m ² g ⁻¹	Pore volume mL g ⁻¹	Av. Pore diameter nm
Pd/C	-	921	0.67	2.9
Pd-SCILL-1	6	393	0.47	4.8
Pd-SCILL-1	17	283	0.31	4.4
Pd-SCILL-1	45	146	0.18	4.8

Temperature variation in toluene hydrogenation

The uncoated Pd/C catalyst was tested in the temperature range between 40 and 80 °C.

Figure S4. Conversion over time plot for the hydrogenation of toluene using Pd/C catalyst. Reaction conditions: $p_{hydrogen} = 15$ bar, $c_{toluene} = 0.25$ mol L⁻¹, solvent = 100 mL cyclohexane, $m_{cat} = 1$ g, $w_{Pd} = 10$ wt%, stirring speed = 1000 min⁻¹, ionic liquid coating = 13 wt%.

The chloroaluminate coated Pd-SCILL-1 catalyst was tested in the temperature range between 40 and 80 °C.

Figure S5. Conversion over time plot for the hydrogenation of toluene using Pd-SCILL-1 catalyst. Reaction conditions: $p_{hydrogen} = 15$ bar, $c_{toluene} = 0.25$ mol L⁻¹, solvent = 100 mL cyclohexane, $m_{cat} = 1$ g, $w_{Pd} = 10$ wt%, stirring speed = 1000 min⁻¹, ionic liquid coating = 13 wt%.

The LCC coated Pd-SCILL-2 catalyst was tested in the temperature range between 40 and 90 °C.

Figure S6. Conversion over time plot for the hydrogenation of toluene using Pd-SCILL-2 catalyst. Reaction conditions: $p_{hydrogen} = 15$ bar, $c_{toluene} = 0.25$ mol L⁻¹, solvent = 100 mL cyclohexane, $m_{cat} = 1$ g, $w_{Pd} = 10$ wt%, stirring speed = 1000 min⁻¹, ionic liquid coating = 13 wt%.

Figure S7. Integral analysis of toluene hydrogenation using Pd/C catalysts. Temperatures as indicated in Figure S3.

Figure S8. Integral analysis of toluene hydrogenation using Pd-SCILL-1 catalysts. Temperatures as indicated in Figure S4.

Figure S9. Integral analysis of toluene hydrogenation using Pd-SCILL-2 catalysts. Temperatures as indicated in Figure S5.

Agitation speed variation

Figure S10. Conversion over time plot for the agitation speed variation of the hydrogenation of toluene using Pd/C catalyst. Reaction conditions: $p_{hydrogen} = 15$ bar, $c_{toluene} = 0.25$ mol L⁻¹, solvent = 100 mL cyclohexane, $m_{cat} = 1$ g, $w_{Pd} = 10$ wt%, stirring speed = 250-1000 min⁻¹.

Metal leaching studies

Figure S11. Leaching studies determined via ICP analysis of the Pd-SCILL samples. Reaction conditions: T = 60 °C, $p_{hydrogen} = 1$ bar, $c_{toluene} = 0.25$ mol L⁻¹, solvent = 100 mL cyclohexane, $m_{cat} = 1$ g, $w_{Pd} = 10$ wt%, stirring speed = 1000 min⁻¹, ionic liquid coating = 13 wt%. The solid line indicates the initial Pd loading, the dashed line indicates the initial Al loading.