Supporting information ## Dopant-free multilayer back contact silicon solar cells employing $V_2O_x/metal/V_2O_x \ as \ an \ emitter$ Weiliang Wu^{ab}, Wenjie Lin^b, Jie Bao^a, Zongtao Liu^{bc}, Binhui Liu^b, Kaifu Qiu^b, Yifeng Chen^{*d} & Hui Shen*bcd Figure S1 The three metal patterning masks for alignment ^a School of Electronics and Information Technology, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou, Guangdong Province, PR China ^b Institute for Solar Energy Systems, School of Physics, 5th Floor, C Block, Building of Engeneering, 132 Wai Huan Dong Road, Sun Yat-Sen University, Guangzhou, Guangdong Province, PR China ^c Shunde-SYSU Institute for Solar Energy, Beijiao town, Shunde, Guangdong Province, 528300, PR China ^d State Key Laboratory of PV Science and Technology, Trina Solar, Changzhou, Jiangsu, China Figure S2 Efficiency as a function of the gap distance Figure S3: The dependence of contact resistance ρ_c values for V_2O_x /n-Si contacts on V_2O_x thickness, as respectively measured and fitted using the transfer length method (TLM). Figure S4: (a) The dependence of series resistance R_S values for VMV/n-Si solar cell. (b) The J-V characteristic curves of different emitters. Figure S5: (a) and (b) show a serial of I–V measurements of sample with VMV (Ca)/n-Si contacts using the transfer length method (TLM). Figure S6: The image of a finished MLBC solar cells with VMV (4 nm Au) as emitter.