Supporting information for Asymmetric passivation of edges: a route to make magnetic graphene nanoribbon

Wen-cai Yi,^{ab} Wei Liu,^{cd} Lei Zhao,^b Rashed Islam,^b Mao-sheng Miao^{*bc} and Jing-yao Liu^{*a} ^a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China. E-mail: ljy121@jlu.edu.cn; ^b Department of Chemistry & Biochemistry, California State University, Northridge, CA, 91330, USA. E-mail: mmiao@csun.edu ^c Beijing Computational Science Research Center, Beijing, 100094, P. R. China ^d Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA

Table S1: The value of band gap of the studied ZGNRs (at PBE level)

Name	8-ZGNR	8-ZGNR-1/8	8-ZGNR-4/8	8-ZGNR-8/8
Band gap (eV)	0.67	0.26	0.06	0.09

Fig. S1: The top and side view of the final configurations for each molecular dynamics simulation at 400K of (a) 8-ZGNR-8/8 and (b) 8-ZGNR-4/8, respectively.

Fig. S2: The spin-polarized electron density of (a) two CO₂ molecules adsorbed on two edges of 8-ZGNR, AFM, m= $0.00\mu_B$; (b) two CO₂ molecules adsorbed on two different position of edges of 8-ZGNR, AFM, m= $0.00\mu_B$; (c) three CO₂ molecules adsorbed on two edges of 8-ZGNR, AFM, m= $2.00\mu_B$; (d) three CO₂ molecules adsorbed on three different position of edges 8-ZGNR, AFM, m= $2.00\mu_B$; bule was spin up and yellow was spin down. The isosurface value is set to $1.00 \times 10^{-2} \text{ Å}^{-3}$.

Fig. S3: Snapshots of the final configurations for each molecular dynamics simulation under (a) 300 and (b) 700 K (top and side views); The fluctuations of temperature as a function of the molecular dynamic simulation step at (c) 300K and (d) 700 K, respectively.