Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Phosphomolybdic Acid Supported Atomically Dispersed Transition Metal Atoms (M = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au): Stable Single Atom Catalysts Studied by Density Functional Theory

Shujiao Wang,^a Yingxin Feng,^a Sen Lin,^{*, a} and Hua Guo^b

^aState Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, People's Republic of China.

^bDepartment of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.

E-mail: slin@fzu.edu.cn (S. Lin)

Figure S1 Optimized configurations of M-PMA (M= Cu, Ru and Pt) with the numbers of M equal to 1, 2 and 3 at the 4-H site of PMA.

Figure S2 Optimized configurations of an O_2 molecule adsorbed on M-PMA (M= Ru and Fe).

M ₁	Initial position	$E_{ads}(eV)$ after optimization
Cu	4-H	-7.50
	3H-O _c	-7.50
	3H-O _{bri}	-5.02
	B-O _c -O _{bri}	-4.49
Ru	4-H	-11.04
	3H-O _c	-11.10
	3H-O _{bri}	-9.70
	B-O _c -O _{bri}	-9.66
Pt	4-H	-7.92
	3H-O _c	-5.95
	3H-O _{bri}	-5.95
	B-O _c -O _{bri}	-5.21

Table S1 Calculated adsorption energies (E_{ads}/eV) for M (M= Cu, Ru and Pt) on PMA with M initially positioned at 4-H, 3H-O_c, 3H-O_{bri}, and B-O_c-O_{bri}, respectively.

Table S2 Calculated adsorption energies (eV) of M (Pt, Ru and Cu) on PMA at the 4-

M-PMA	Numbers of M	$E_{\rm ads}$
Pt	1	-7.92
	2	-6.14
	3	-5.23
Ru	1	-11.69
	2	-9.49
	3	-8.56
Cu	1	-7.23
	2	-5.11
	3	-4.36

H site with the numbers of M equal to 1, 2 and 3.

М	E _{ads}	Ecoh		
Group VIII				
Fe	-10.90	-4.28		
Ru	-11.04	-6.74		
Os	-11.24	-8.17		
Group IX				
Со	-10.41	-4.39		
Rh	-9.11	-5.74		
Ir	-10.08	-6.94		
Group X				
Ni	-9.35	-4.44		
Pd	-6.44	-3.90		
Pt	-7.92	-5.85		
Group XI				
Cu	-7.50	-3.48		
Ag	-4.63	-2.94		
Au	-5.04	-3.81		

Table S3 The comparison between E_{ad} values (eV) and the experimental metal cohesive energies (E_{coh})