A multi-functional iodoplumbate-based hybrid crystal: 1-propyl-4-aminopyridinium triiodoplumbate

Hai-Bao Duan,**a Shan-Shan Yu, \#a Shao-Xian Liu ${ }^{\text {a }}$, Hui Zhang*a

School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P.R.China

Tel.: +86 2586178274

Fax: +86 2586178274

E-mail: duanhaibao4660@163.com

Preparation of 1

A mixture of $\mathrm{PbI}_{2}(0.926 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{KI}(3.320 \mathrm{~g}, 20 \mathrm{mmol})$ with molar ratio of 1:10 in DMF (50 mL) was heated under reflux with stirring for 25 min . After the clear yellow solution was formed and a DMF solution [$\left.\mathrm{C}_{3}-\mathrm{Apy}\right] \mathrm{Br}(2 \mathrm{mmol})$ was slowly added to the mixture, which was stirred for 8 h and filtered to remove insoluble compounds. The filtrate was evaporated at ambient temperature for 14 days to produce light yellowish needle-shaped crystals in ca. 75% yield. The crystal was washed with DMF.

Table S1 Crystallographic data and refinement parameter of $\mathbf{1}$ at room temperature

Temperature (K)	$293(2)$	$120(2)$
Wavelength (\AA)	0.71073	0.71073
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{I}_{6} \mathrm{~N}_{4} \mathrm{~Pb}_{2}$	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{I}_{6} \mathrm{~N}_{4} \mathrm{~Pb}_{2}$
Formula weight	1450.2	1450.2
CCDC no.	1509582	1510132
Crystal system	Orthorhombic	Orthorhombic
Space group	Pnma	Pnma
$a(\AA)$	$7.8748(5)$	$7.8013(11)$
$b(\AA)$	$10.4050(8)$	$10.2985(15)$
$c(\AA)$	$19.3554(17)$	$19.117(3)$
$\alpha\left({ }^{\circ}\right)$	90	90
$\beta\left({ }^{\circ}\right)$	90	90
$\gamma\left({ }^{\circ}\right)$	90	90
$V\left(\AA^{3}\right) / \mathrm{Z}$	$1585.9(2)) / 2$	$1535.9(4) / 2$
$\rho\left(\mathrm{~g} \cdot \mathrm{C}^{-1}\right)$	3.307	3.136
$F(000)$	1264.0	1264.0
Abs. coeff. $\left(\mathrm{mm}{ }^{-1}\right)$	16.452	16.988
θ Ranges $($ data collection;	$2.29-25.67$	$2.15-27.57$
$\left.{ }^{\circ}\right)$	$-9 \leq \mathrm{h} \leq 9$	$-10 \leq \mathrm{h} \leq 10$
Independent	$-10 \leq \mathrm{k} \leq 12$	$-13 \leq \mathrm{k} \leq 13$
reflections $/$ restraints $/$ param	$1596 / 0 / 102$	$-24 \leq 1 \leq 24$
$\mathrm{R}_{\text {int }}$	$-23 \leq 1 \leq 19$	0.0435
ranges	0.1229	$1870 / 03$

eters

Goodness of fit on F^{2}	1.082	1.287
$R_{1}, w R_{2}^{\mathrm{a}}[I>2 \sigma(\mathrm{I})]$	$0.0832,0.2296$	$0.0231,0.0565$
$R_{1}, w R_{2}^{\mathrm{a}}$ [all data]	$0.0949,0.2460$	$0.0283,0.0584$
Residual (e.nm-3)	$4.721 /-2.636$	$0.995 /-1.660$

$$
{ }^{\mathrm{a}} R_{1}=\sum| | F_{o}\left|-\left|F_{c}\right|\right| /\left|F_{o}\right|, w R_{2}=\left[\sum w\left(\sum F_{o}{ }^{2}-F_{c}^{2}\right)^{2} / \sum w\left(F_{o}^{2}\right)^{2}\right]^{1 / 2}
$$

Table S2 CIE coordinates of $\mathbf{1}$ at selected temperature

Temperature (K)	CIE coordinates
300	$(0.462,0.473)$
275	$(0.472,0.478)$
250	$(0.483,0.476)$
225	$(0.593,0.474)$
200	$(0.516,0.461)$
175	$(0.521,0.456)$
150	$(0.536,0.445)$
125	$(0.550,0.435)$
100	$(0.559,0.427)$
85	$(0.569,0.420)$
70	$(0.582,0.409)$
55	$(0.591,0.402)$
40	$(0.600,0.394)$
25	$(0.606,0.389)$
10	

Figure S1 PXRD curve of $\mathbf{1}$ at room temperature

Figure S2 TG curve of $\mathbf{1}$

Figure S3 Frequency dependencies of the ε^{\prime} of $\mathbf{1}$ in the $10-80^{\circ} \mathrm{C}$ temperature range

Figure S4 Frequency dependencies of $\tan (\delta)$ of $\mathbf{1}$ in the $10-80^{\circ} \mathrm{C}$ temperature range

Figure S5 Complex impedance of $\mathbf{1}$ between 50 and $80^{\circ} \mathrm{C}$.

Figure S6 Arrhenius plots of $\mathbf{1}$ between 60 and $130^{\circ} \mathrm{C}$.

Figure S7 Emission spectra of $\mathbf{1}$ at room temperature

