Liquefaction of waste pine wood and its application in the synthesis of a flame

retardant polyurethane foam

Dizhu Yue^a, Oluwasola Oribayo^a, Garry L Rempel^b, Qinmin Pan^{*a}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P.R. China
^bDepartment of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

1. The carbon NMR analysis of liquefied polyol

Position	Chemical shift δ (ppm)						
glycouse	C1	C2	C3	C4	C5	C6	$\Box C1$
levulinate	100.2 L1	72.3 L2	72.6 L3	71.3 L4	73.5 L5	63.1 □L1	66.7
Formic eater	174.1 F1	28 □F1	37.9	207.4	29.9	66.7	
glycerol	163.4 G1	173.1 G2					
PEG400	72.7 P1	63.1 P2					
	70.2	60.6					

Table S1.¹³CNMR chemical shift of liquefied polyol

2. Thermal behaviour and flammability properties of MWPU foam

Fig.S1.The TGA spectra of samples P2 to P5 (The five independent samples measurement are R1, R2, R3, R4, R5 respectively)

Fig.S2. T onset standard values of samples P2 to P5

3. FTIR-TGA analysis of evolved gases from MP

Fig.S3A: FTIR-TGA spectra of evolved gases from MP at different temperatures

Fig.S3B: 3D view FTIR-TGA spectra of evolved gases from MP at different temperatures

From the FTIR-TGA spectra of MP at different temperatures as shown in Fig.S1A and S1B, no absorptions peak was below 204°C, indicating no gases evolved from MP. At 314°C, new peaks appear at 3566, 3451, 1450, 827 and 750 cm⁻¹ which can be attributed to absorptions of melamine formed from the decomposition of MP. It can be observed that after 406°C, new peaks appears at 3330, 1625, 1500, 956 and 926 cm⁻¹ are due to NH₃ absorptions, and the peaks at 3724,3648 and 1080 cm⁻¹ are attributed to absorptions of water. ¹⁻³

- 1. Z. Wang, P. Lv, Y. Hu and K. Hu, Journal of Analytical and Applied Pyrolysis, 2009, 86, 207-214.
- 2. B. CICHY, CHEMIK, 2013, 67, 214-219.
- 3. X. Lai, X. Zeng, H. Li, F. Liao, C. Yin and H. Zhang, Polymer Composites, 2012, 33, 35-43.

4. The combustion process of foams

Fig.S4.The combustion process of (A) wood based foam and (B) MWPU foam with 10wt% MP at oxygen concentrations of 18.5vol % and 21.7vol %, respectively

Fig.S5. The SEM-EDS analysis of the char of sample P5.

6. The mechanical property of MWPU foams

Fig. S6. The tensile strength of P2 to P5