1	
2	Supporting Information
3	
4	
5	Amorphous FeF ₃ /C nanocomposite cathode derived from metal-
6	organic frameworks for sodium ion batteries
7	Liguo Zhang, ^a Shaomin Ji, ^{*c} Litao Yu, ^a Xijun Xu, ^b and Jun Liu, ^{*b}
8	
9	^a School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
10	^b School of Materials Science and Engineering and Guangdong Provincial Key Laboratory of
11	Advanced Energy Storage Materials, South China University of Technology, Guangzhou,
12	510641, PR China
13	E-mail: msjliu@scut.edu.cn
14	^c School of Chemical Engineering and Light Industry, Guangdong University of Technology,
15	Guangzhou, 510006, China.
16	E-mail: smji@gdut.edu.cn
17	
18	
19	
20	
21	

Fig. S1. (a) The structure of MIL-88B, demonstrating the molecular structure and chemical 19 composition of Fe-MOF; (b) XRD pattern of $Fe_3O_4/C-730-3h$ nanocomposites at carbonization 20 temperature of 730 °C for 3 h, demonstrating the appearance of Fe phase as the carbonization 21 temperature above 730 °C.

Fig. S3. (a) HRTEM image of $FeF_3 \cdot 3H_2O/C$ -700-3h nanocomposites, showing the distribution of iron fluoride particles in the carbon framework and crystallization state of graphitized carbon; (b) TGA curve of the FeF₃/C-700-3h nanocomposites, confirming the carbon content of the sample; (c,d) XPS spectra of the FeF₃/C-700-3h nanocomposites, demonstrating the component of amorphous iron fluoride.

- 24
- 25

Fig. S4. (a) Galvanostatic charge/discharge voltage profile at various current densities from 15 mA g⁻¹ to 1500 mA g⁻¹; (b) charge/discharge voltage profile of the FeF₃/C nanocomposites at various carbonization conditions: FeF₃/C-500-3h from the precursor of 500 °C carbonization for 3h, FeF₃/C-600-3h from the precursor of 600 °C carbonization for 3 h, FeF₃/C-700-3h from the precursor of 700 °C carbonization for 3 h, FeF₃/C-700-5h from the precursor of 700 °C carbonization for 5 h.

20

- 21
- 22
- 23
- 24

Fig. S5. Electrochemical performances of the FeF₃/C nanocomposites at various carbonization 15 conditions: (a) discharge/charge rate performance of the FeF₃/C nanocomposites at carbonization 16 temperature of 500 °C for 3h in the voltage range of 1.5-4.5 V; (b) charge/discharge rate 17 performance of the FeF₃/C nanocomposites at carbonization temperature of 600 °C for 3h in the 18 voltage range of 1.5–4.5 V; (c) charge/discharge rate performance of the FeF₃/C nanocomposites 19 at carbonization temperature of 700 °C for 5h in the voltage range of 1.5-4.5 V; (d) cycling 20 21 performance of of the FeF₃/C nanocomposites at carbonization temperature of 700 °C for 5h in the voltage range of 1.5–4.5 V. 22

24

19 Fig. S6. (a,b) Low- and high-magnification SEM images of the precursor of Fe_3O_4/C -700-5h; 20 (c,d) low- and high-magnification SEM images of FeF_3/C -700-5h nanocomposites; (e,f) TEM 21 images of FeF_3/C -700-5h nanocomposites.

- 23
- 24

3 Table S1. The comparison of discharge capacities and fading rates/cycle of the previously 4 reported FeF₃ electrodes.

Electrode	Voltage range (V)	Current density (mA g ⁻¹)	Discharge capacity (mAh g ⁻¹) /(cycle no.)	Ref.
FeF ₂ /RGO	1.5- 4.5	100	125/(2 nd)- 70/(1000 th)	[1]
FeF ₃ /graphene	1.5- 4.2	60	202/(1 st)- 167/(50 th)	[2]
K _{0.6} FeF ₃ /C	1.5-4.2	19.6 (0.1C)	295/(1 st)- 100/(35 th)	[3]
FeF ₃ ·xH ₂ O/graphene	1.5- 4.5	~24 (0.1C)	334/(1 st)- 101/(30 th)	[4]
FeF ₃ ·0.5H ₂ O/RGO	1.5- 4.5	11 (0.05C)	242/(1st)- 230/(100th)	[5]
FeF ₃ ·0.5H ₂ O	1.2-4.0	22 (0.1C)	135/(2 nd)- 98/(50 th)	[6]
FeF ₃ ·0.33H ₂ O/SWNTs	1.2- 4.0	~23 (0.1C)	130/(1 st)- 74/(50 th)	[7]
FeF ₃ ·0.5H ₂ O/MWNTs	1.5-4.5	22 (0.1C)	108/(1 st)- 90/(100 th)	[8]
FeF ₃ /C	1.5- 4.5	75	286/(1 st)- 126/(100 th)	This wor

1 References

- D.-l. Ma, H.-g. Wang, Y. Li, D. Xu, S. Yuan, X.-l. Huang, X.-b. Zhang, Y. Zhang, Nano
 Energy, 2014, 10, 295-304.
- 5 2. T. Bao, H. Zhong, H. Zheng, H. Zhan, Y. Zhou, Mater. Lett., 2015, 158, 21-24.
- 6 3. Y. Han, J. Hu, C. Yin, Y. Zhang, J. Xie, D. Yin, C. Li, *J. Mater. Chem. A* 2016, 4, 73827 7389.
- 8 4. Y. Shen, X. Wang, H. Hu, M. Jiang, X. Yang, H. Shu, J. Power Sources, 2015, 283, 2049 210.
- 10 5. G. Ali, S.H. Oh, S.Y. Kim, J.Y. Kim, B.W. Cho, K.Y. Chung, J. Mater. Chem. A, 2015, 3,
 11 10258-10266.
- C. Li, C. Yin, L. Gu, R.E. Dinnebier, X. Mu, P.A. van Aken, J. Maier, J. Am. Chem. Soc.,
 2013, 135, 11425-11428.
- 14 7. C. Li, C. Yin, X. Mu, J. Maier, Chem. Mater., 2013, 25, 962-969.
- 15 8. G. Ali, J.-H. Lee, B.W. Cho, K.-W. Nam, D. Ahn, W. Chang, S.H. Oh, K.Y. Chung,
- 16 *Electrochim. Acta*, 2016, **191**, 307-316.
- 17
- 18