Supporting Information

CO₂/N₂ triggered Switchable Pickering Emulsions Stabilized by Alumina Nanoparticles in Combination with a Conventional Anionic Surfactant

Maodong Xu,^{1,2} Wanqing Zhang, ¹ Xiaomei Pei, ¹ Jianzhong Jiang,¹ Zhenggang Cui^{1,*}

and Bernard P. Binks^{3,*}

¹ The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University,

1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China

²School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, P.R. China

³ School of Mathematics and Physical Sciences, University of Hull,

Hull. HU6 7RX. U.K.

Figure S1. (A) SEM and (B) TEM images of alumina nanoparticles used.

Figure S2. Bubbling device for switching on/off the switchable surfactant DDAA in water continuous phases.

Figure S3. Zeta potential of 0.1 wt.% alumina nanoparticles dispersed in water of different pH at 25 °C.

Figure S4. Size distribution by dynamic light scattering of alumina nanoparticles of different concentration dispersed ultrasonically in pure water and in 0.3 mM SDS aqueous solution at 25 °C.

Figure S5. Photograph of aqueous solutions of equimolar mixtures of SDS and DDAA (amidinium/cationic) at different concentrations at 25 °C taken 24 h after preparation. Concentration of each surfactant in mM is given.