SUPPORTING INFORMATION

Forward and reverse reactions of N-methylaniline-blocked polyisocyanates: a clear step into double Arrhenius plots and equilibrium temperature of thermally reversible reactions.

A.Sultan Nasar* and G.Libni

Department of Polymer Science, University of Madras, Guindy Campus, Chennai-600 025, India.E-mail:drsultannasar@yahoo.com; drsultannasar@unom.ac.in

Electronic supplementary information(ESI) available : FT-IR spectra of N-methylanilineblocked polyisocyanates recorded at dynamic condition for deblocking reaction, FT-IR spectra of N-methylaniline-blocked polyisocyanates recorded at isothermal condition for blocking and deblocking reaction, kinetic plots of second order blocking reaction and kinetic plots of first order deblocking reaction.

Figure S1.FT-IR spectra recorded for different time intervals under isothermal condition for the blocking reaction of polyisocyanate with N-methyl-o-toluidine (a) 40°C (b) 50°C (c) 60°C.

Figure S2.FT-IR spectra recorded for different time intervals under isothermal condition for the blocking reaction of polyisocyanate with N-methyl-o-anisidine (a) 30°C (b) 40°C (c) 50°C

Figure S3.FT-IR spectra recorded for different time intervals under isothermal condition for the blocking reaction of polyisocyanate with 2-chloro-N-methylaniline (a) 40° C (b) 50° C (c) 60° C

Figure S4.FT-IR spectra recorded for different time intervals under isothermal condition for the blocking reaction of polyisocyanate with 4-chloro-N-methylaniline (a) 30^{0} C (b) 40^{0} C (c) 50^{0} C

Figure S5.FT-IR spectra recorded for different time intervals under isothermal condition for the blocking reaction of polyisocyanate with methyl 4-methylamino)benzoate (a) 50° C (b) 60° C (c) 70° C.

Figure S6. Second-order kinetic plots of blocking reaction of polyisocyanate with N-methyl-o-toluidine.

Figure S7. Second-order kinetic plots of blocking reaction of polyisocyanate with N-methyl-o-anisidine.

Figure S8. Second-order kinetic plots of blocking reaction of polyisocyanate with 2-chloro-N-methylaniline.

Figure S9. Second-order kinetic plots of blocking reaction of polyisocyanate with 4-chloro-N-methylaniline

Figure S10. Second-order kinetic plots of blocking reaction of polyisocyanate with methyl 4- (methylamino)benzoate.

Figure S11. FT-IR spectra of N-methyl-o-toluidine -blocked polyisocyanate recorded at (a) different temperatures (b) zoomed range of isocyanate absorption region.

Figure S12. FT-IR spectra of N-methyl-o-anisidine-blocked polyisocyanate recorded at (a) different temperatures (b) zoomed range of isocyanate absorption region.

Figure S13. FT-IR spectra of 2-chloro-N-methylaniline-blocked polyisocyanate recorded at (a) different temperatures (b) zoomed range of isocyanate absorption region.

Figure S14. FT-IR spectra of 4-chloro-N-methylaniline-blocked polyisocyanate recorded at (a) different temperatures (b) zoomed range of isocyanate absorption region.

Figure S15. FT-IR spectra of methyl 4-(methylamino)benzoate-blocked polyisocyanate recorded at (a) different temperatures (b) zoomed range of isocyanate absorption region.

Figure 16. First-order kinetic plots of the deblocking reaction of N-methyl-o-toluidine-blocked polyisocyanate.

Figure 17. First-order kinetic plots of the deblocking reaction of N-methyl-o-anisidine-blocked polyisocyanate.

Figure 18. First-order kinetic plots of the deblocking reaction of 2-chloro-N-methylaniline-blocked polyisocyanate.

Figure 19. First-order kinetic plots of the deblocking reaction of 4-chloro-N-methylaniline-blocked polyisocyanate.

Figure 20. First-order kinetic plots of the deblocking reaction of methyl 4-(methylamino)benzoate-blocked polyisocyanate.

Figure S21. FT-IR spectra recorded for different time intervals under isothermal condition for the deblocking reaction of N-methyl-o-toluidine-blocked polyisocyanate: (a) 130° C (b) 140° C (c) 150° C (d) 160° C.

Figure S22. FT-IR spectra recorded for different time intervals under isothermal condition for the deblocking reaction of N-methyl-o-anisidine-blocked polyisocyanate: (a) 130° C (b) 140° C (c) 150° C (d) 160° C

Figure S23. FT-IR spectra recorded for different time intervals under isothermal condition for the deblocking reaction of 2-chloro-N-methylaniline-blocked polyisocyanate: (a) 120° C (b) 130° C (c) 140° C (d) 150° C

Figure S24. FT-IR spectra recorded for different time intervals under isothermal condition for the deblocking reaction of 4-chloro-N-methylaniline-blocked polyisocyanate: (a) 110° C (b) 120° C (c) 130° C (d) 140° C

Figure S25. FT-IR spectra recorded for different time intervals under isothermal condition for the deblocking reaction of methyl 4-(methylamino)benzoate-blocked polyisocyanate: (a) 100° C (b) 110° C (c) 120° C d) 130° C