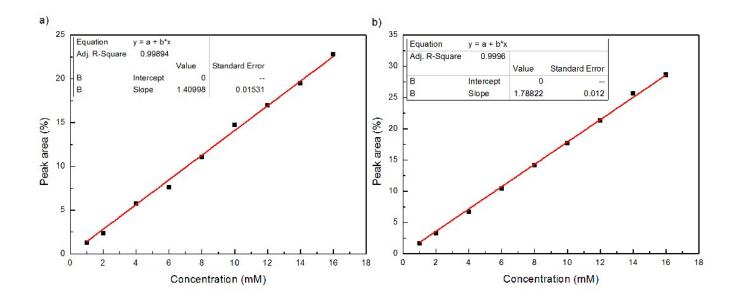
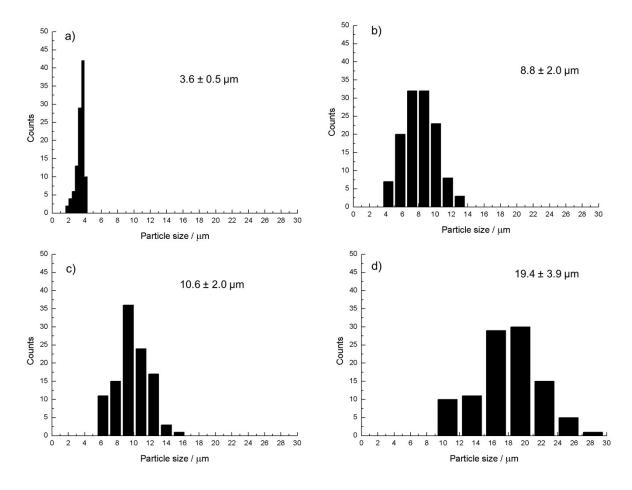
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017


Supplementary Information

Catalytic upgrading of carboxylic acid as bio-oil models over hierarchical ZSM-5 obtained via an organosilane approach


Kamonlatth Rodponthukwaji,^a Chularat Wattanakit,^{*b} Thittaya Yutthalekha,^b Sunpet Assavapanumat,^b Chompunuch Warakulwit,^a Wannaruedee Wannapakdee^b and Jumras Limtrakul^c

- ^a Department of Chemistry and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology, Kasetsart University, Bangkok 10900, Thailand
- ^b Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institution of Science and Technology, Rayong 21210, Thailand
- ^c Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institution of Science and Technology, Rayong 21210, Thailand

^{*} Corresponding author; e-mail chularat.w@vistec.ac.th

Figure S1. Calibration curves of a) Benzyl alcohol and b) Benzyl acetate by using decane as an internal standard.

Figure S2. Particle size distribution of (a) C_ZSM-5, (b) ZSM-5_(4.8)TPOAC, (c) ZSM-5_(9.6)TPOAC, and (d) ZSM-5_(38.4)TPOAC.

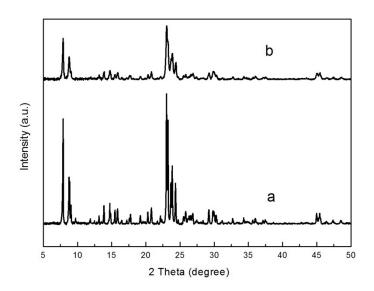
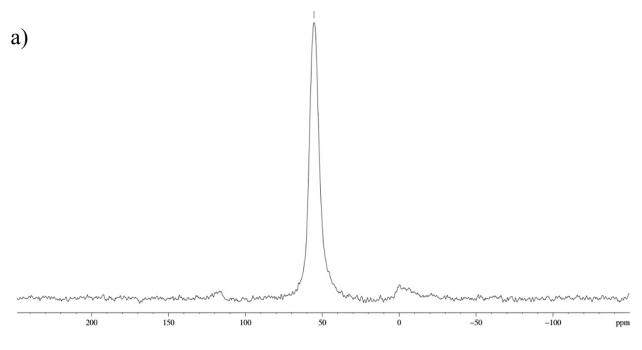
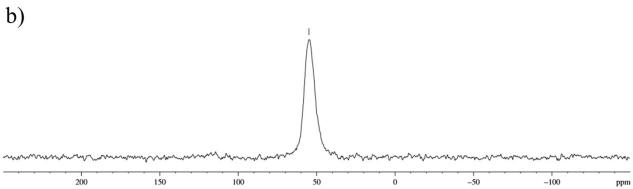
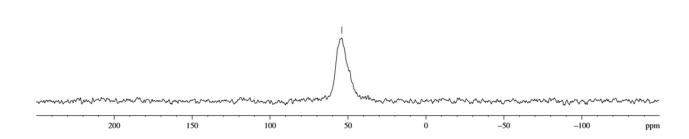
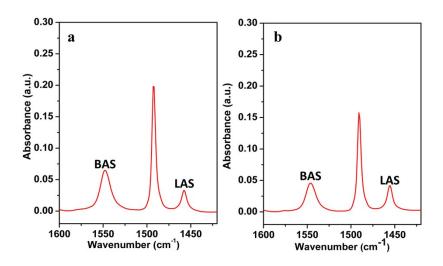





Figure S3. XRD patterns of samples with low Si/Al ratio: (a) Commercial ZSM-5, and (b) Hierarchical ZSM-5(34).



c)

Figure S4. ²⁷Al MAS NMR spectra of (a) Commercial ZSM-5, (b) Hierarchical ZSM-5(34), and (c) Hierarchical ZSM-5(90).

Figure S5. FTIR spectra of pyridine adsorbed on a) Commercial ZSM-5 and b) Hierarchical ZSM-5(34), after evacuation at 573 K.

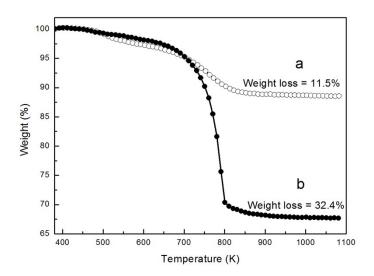


Figure S6. Weight loss profiles of a) Hierarchical ZSM-5(34), and b) Commercial ZSM-5 catalysts.

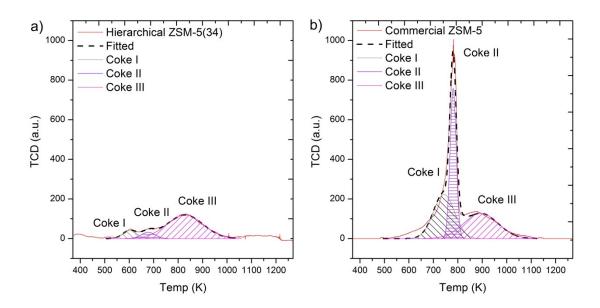
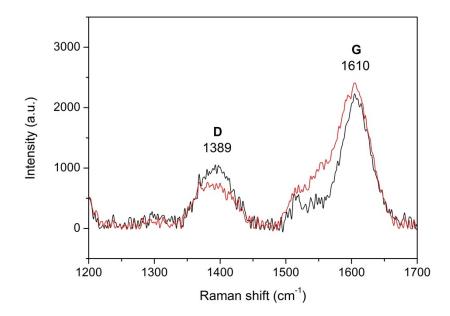
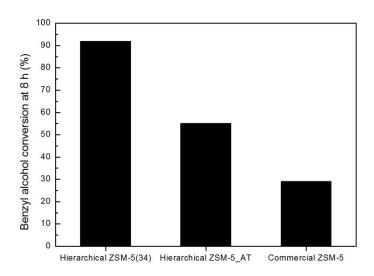




Figure S7. O₂ TPO profiles of a) Hierarchical ZSM-5(34), and b) Commercial ZSM-5 catalysts.

Figure S8. Raman spectra at 532 nm of spent catalysts: Commercial ZSM-5 (black) and Hierarchical ZSM-5(34) (red).

Figure S9. Benzyl alcohol conversion (%) on different samples obtained by different methods: Hierarchical ZSM-5(34), Commercial ZSM-5, and Hierarchical ZSM-5_AT.

Table S1. Relative crystallinity (%) of all synthesized ZSM-5 samples

Samples	% Crystallinity			
C_ZSM-5	95.0			
ZSM-5_(4.8)TPOAC	58.4			
ZSM-5_(9.6)TPOAC	66.0			
ZSM-5_(38.4)TPOAC	40.0			

Table S2. Brønsted and Lewis acidity of Commercial HZSM-5 and Hierarchical ZSM-5(34), after evacuation at 573 K.

Sample	[BAS] (μmol/g)	[LAS] (μmol/g)	
	573 K	573 K	
Commercial HZSM-5	109	18	
Hierarchical ZSM-5(34)	82	31	

Table S3. Textural properties of hierarchical zeolites obtained from direct- and post synthesis approaches.

Samples	S _{BET} ^a	S _{micro} b	S _{ext} ^c	V_{total}^{d}	V _{micro} e	V _{ext/meso} ^f	V _{Meso} /V _{total} ^g
Hierarchical ZSM-5(34)	434	287	147	0.3378	0.1151	0.2227	0.66
Hierarchical ZSM-5_AT	349	186	164	0.4562	0.0755	0.3807	0.83

 $^{{}^{}a}S_{BET}$: BET specific surface area; ${}^{b}S_{micro}$: micropore surface area; ${}^{c}S_{ext}$: external surface area; ${}^{d}V_{total}$: total pore volume; ${}^{e}V_{micro}$: micropore volume; ${}^{f}V_{micro} = V_{total} - V_{ext/meso}$; All surface areas and pore volumes are in the units o ${}^{m}M_{cro}$ and ${}^{c}M_{cro}$: external surface area; ${}^{d}V_{total}$: total pore volume; ${}^{e}V_{micro}$: micropore volumes are in the units o ${}^{m}M_{cro}$; and ${}^{c}M_{cro}$: external surface area; ${}^{d}V_{total}$: total pore volume; ${}^{e}V_{micro}$: ${}^{e}V_{micro}$: micropore volumes are in the units o ${}^{m}M_{cro}$: ${}^{e}V_{micro}$: ${}^{e}V_{m$

Table S4. Catalytic activity of commercial ZSM-5 and hierarchical ZSM-5(34) for the esterification of levulinic acid with ethanol.

Catalyst	Time	Conversion of	Selectivity of Ethyl levulinate	
	(h)	Levulinic acid		
		(%)	(%)	
Commercial ZSM-5	3	7.43	89.13	
	6	18.72	100.00	
	24	25.20	100.00	
	48	28.66	100.00	
Hierarchical ZSM-5(34)	3	31.09	88.59	
	6	48.49	97.78	
	24	64.51	100.00	
	48	73.37	100.00	

^{*}Reaction condition: Catalyst 0.45 g, Levulinic acid 3 ml, Ethanol 1.75 ml, decane (internal standard) 0.1 ml, Toluene (Solvent) 15 ml, 373 K under an atmospheric pressure.