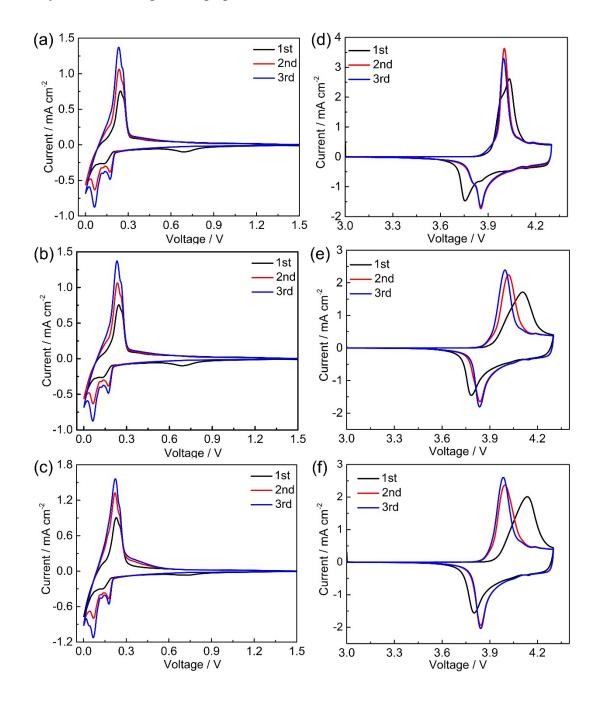
Supporting Information

Improving the cyclability performance of lithium-ion batteries by

Introducing Lithium Difluorophosphate (LiPO₂F₂) Additive

Guanghua Yang^{a,b†}, Junli Shi^{a†}, Cai Shen^a, Shuwei Wang^{a,b}, Lan Xia^a, Huasheng Hu^a, Hao Luo^a, Yonggao Xia^{a*} and Zhaoping Liu^{a*}

^aNingbo Institute of Materials Technology& Engineering (NIMTE), Chinese Academy of


Sciences, Ningbo, Zhejiang 315201, China.

^bDepartment of Polymer Materials, Shanghai University, Shangda Street 99, Mailbox 152, Shanghai 200444, China.

[†]G. H. Yang and J. L. Shi contributed equally to this work.

*Corresponding author: E-mail: xiayg@nimte.ac.cn (Yonggao Xia),

E-mail: liuzp@nimte.ac.cn (Zhaoping Liu).

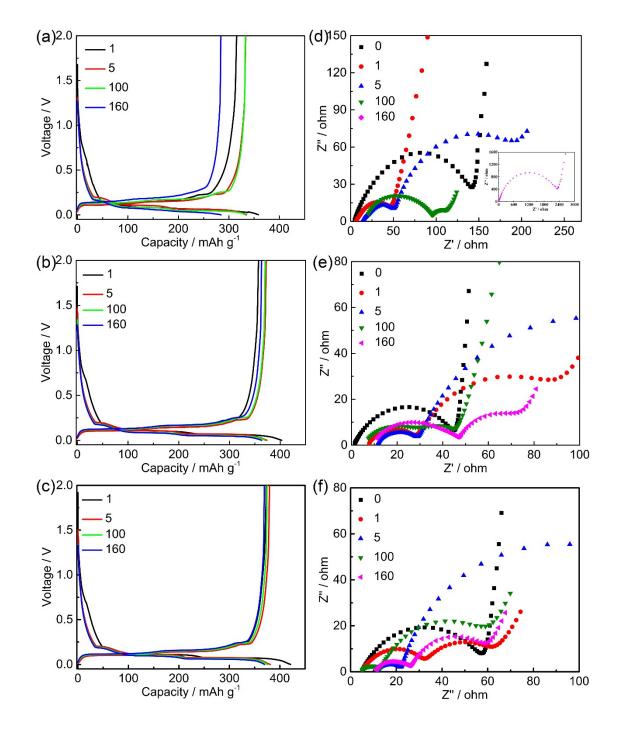

1. The cyclic voltammogram of graphite/Li and LiCoO₂/Li cells

Fig. S1. Cyclic voltammogram of the graphite/Li cells with electrolytes A0 (a); A1 (b); A2 (c). The scan rate is $0.1 \text{mV}/\text{ s}^{-1}$. Cyclic voltammogram of the LiCoO₂/Li cells with electrolytesA0 (d); A1 (e); A2 (f). The scan rate is $0.1 \text{ mV} \text{ s}^{-1}$.

2. Capacity retention of $LiPO_2F_2$ and other additives in different batteries

		capacity	capacity	capacity
electrolyte	additive	retention	retention	retention
		(Li/graphite)	(Li/LiCoO ₂)	(graphite/LiCoO ₂)
		50th	100th	70th
1M LiFP ₆ /[EC+DMC(3/7)]	1.6wt% LiPO ₂ F ₂	99.53%	98.8%	98.5%
1 M LiClO ₄ /PC	3wt% VC	96%	-	-
	3wt% FEC	94.5%	-	-
	3wt% ES	0	-	-
1 M LiPF ₆ /	3wt% TPSA	-	85%	-
[EC+DMC+EMC(1/1/1)]				
1 M LiPF ₆ /(EC+EMC)	0.5wt% LiBOB	-	-	97.1%
	2wt% LiBOB	-	-	96.6%
	1wt% LiBOB +	-	-	96.8%
	0.5wt% VEC			
	1wt% LiBOB +	-	-	97.74%
	2wt% VC			
	2wt% VC	-	-	97.3%

Table S1 capacity retention of $LiPO_2F_2$ and other additives in different batteries

3. The impedance spectroscopic analysis

Fig. S2. Selected discharge-charge curves of graphite/Li cells with electrolytes A0 (a); A1 (b); A2 (c) at the cycles of 1st, 5th, 100th and160th at 0.2 C in the potential range of 0-2V at 25 °C.

EIS spectra of the graphite/Li cells with electrolytes A0 (d); A1 (e); A2 (f) after storage for 24 h, 1st, 5th, 100th and 160th cycles at 0.2 C in the potential range of 0-2V at 25 °C.

We list R_{-} values of	graphite/Li and LiCoC) ₂ /Li half-cells in	the table S2 and S3
$\mathcal{M} \subset \Pi \mathcal{M} \subset \mathcal{M} \subset \mathcal{M} $ values of	Suprinte Li una Licoc	J_2 Li nun cons n	The more 52 and 55

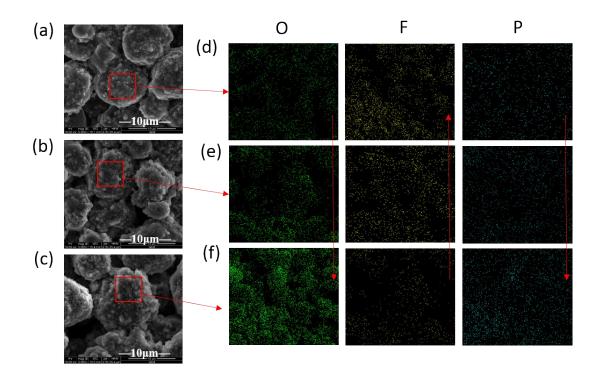
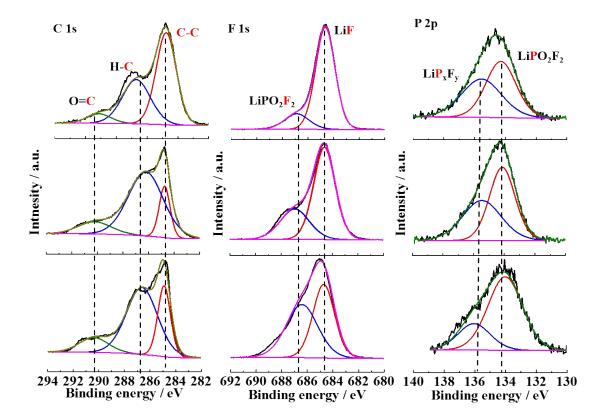

Cycle Mulliber	n_{cl} of n_{0}	R_{ct} of R_{1}	n_{cl} or n_{L}
	$(\Omega \ cm^2)$	$(\Omega \ cm^2)$	$(\Omega \ cm^2)$
0	11	5	6
1	42	19	21
5	27	13	11.9
100	60	15	12.4
160	1700	17	15.8

Table S2. R_{ct} values of graphite/Li cells with A0, A1, and A2 after different cyclesCycle Number R_{ct} of A0 R_{ct} of A1 R_{ct} of A2

Table S3. R_{ct} values of LiCoO2/Li cells with A0, A1, and A2 after different cyclesCycle Number R_{ct} of A0 R_{ct} of A1 R_{ct} of A2


e y ere i vanie er	1010110	1010111		
	$(\Omega \text{ cm}^2)$	$(\Omega \text{ cm}^2)$	$(\Omega \ cm^2)$	
0	140	47	58	
1	80	64	50	
5	120	70	56	
100	150	55	50	
160	2200	60	48	

4. The morphology and distribution of elements on the graphite electrode

Fig. S3. The morphology and distribution of elements on graphite electrode surface by SEM and EDX after 160 cycles. The cell with electrolytes A0 (a); A1 (b); A2 (c). EDX mapping of the red region and the elements of the oxygen, fluorine, and phosphor. The cell with electrolytes A0 (d); A1 (e); A2 (f).

5. XPS spectra of the LiCoO₂ electrodes

Fig. S4. C 1s, F 1s and P 2p XPS spectra of the $LCoO_2$ electrodes from the (top row) the cell with the electrolyte A0, the cell with the electrolyte A1, and the (bottom row) cell with the electrolyte A2 after 160 cycles at 25°C.

In the C 1 s spectra, the peak located at 284.8 eV is assigned to C-C. The peak at 286.7 eV is attributed to C-O bond, and the peak at 289.9 eV is classified to OCO_2 group. These groups can be attributed to $ROCO_2Li$, ROLi and Li_2CO_3 species, which result from the decomposition of the electrolyte on the electrode surface.¹ In the F 1 s spectra and P 2p spectra². We get the same spectra with the results of the graphite surface.

- 1. M. Xu, L. Hao, Y. Liu, W. Li, L. Xing and B. Li, J. Phys. Chem. C, 2011, 115, 6085-6094.
- 2. M. Q. Xu, Y. L. Liu, B. Li, W. S. Li, X. P. Li and S. J. Hu, *Electrochem. Commun.*, 2012, 18, 123-126.