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General Methods 

All chemicals were purchased from commercially available sources and used without further 

purification. Flash column chromatography was performed using silica gel 60 (230–400 mesh 

ASTM) with EtOAc/n-hexane as eluent. 1H NMR and 13C NMR spectra were recorded on 

Bruker DPX-400. 2D ROESY was recorded on Bruker DPX-600. The chemical shifts are 

expressed in ppm and coupling constants are given in Hz. Data for 1H NMR are recorded as 

follows: chemical shift (δ, ppm), multiplicity (s, singlet; brs, broad singlet; d, doublet; dd, 

double doublet; t, triplet; td, triplet doublet; m, multiplet), coupling constant (Hz), integration. 

Data for 13C NMR are reported in terms of chemical shift (δ, ppm). High resolution mass 

spectra (HR-MS) were obtained on Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS 

system equipped with an ion spray source in the positive ion mode. 
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General procedure for C-H bond hydroxylation of cycloalkanes by using 

β-CD or γ-CD as supramolecular hosts 

 

To a mixture of cyclohexane substrate (1.0 mmol) and β- or γ-CD (1.1 mmol) in H2O (50 mL) 

was added 1,1,1-trifluoroacetone (1.0 mmol) and stirred for 1 h. Then, 8 portions of a mixture 

of Oxone (2.5 mmol × 8) and NaHCO3 (7.75 mmol × 8) were added within 7 h (one portion 

was added per hour). After stirring for a total of 24 h at room temperature, the resulting 

mixture was extracted with ethyl acetate (100 mL × 4). The combined organic extract was 

dried over anhydrous Na2SO4 and filtered, and the organic solvent was evaporated under 

reduced pressure. Purification by flash column chromatography on silica gel using 10~20% 

EtOAc/n-hexane gave monohydroxylation product as colorless oil and using 50~75% 

EtOAc/n-hexane gave dihydroxylation product as a white solid. 
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Procedure for selective C-H bond hydroxylation of a 1:1 mixture of 3 and 4 

To a mixture of 3 (0.5 mmol) and 4 (0.5 mmol) and β- or γ-CD (1.1 mmol) in H2O (50 mL) 

was added 1,1,1-trifluoroacetone (1.0 mmol) and stirred for 1 h. Then, 8 portions of a mixture 

of Oxone (2.5 mmol × 8) and NaHCO3 (7.75 mmol × 8) were added within 7 h (one portion 

was added per hour). After stirring for a total of 24 h at room temperature, the resulting 

mixture was extracted with ethyl acetate (100 mL × 4). The combined organic extract was 

dried over anhydrous Na2SO4 and filtered, and the organic solvent was evaporated under 

reduced pressure. Purification by flash column chromatography on silica gel (15% 

EtOAc/n-hexane) gave the mixture product of 3a and 4a as colorless oil (9% total yield of 3a 

and 4a, the ratio of 3a/4a = 1:1 when β-CD was used as supramolecular host; 26% total yield 

of 3a and 4a, the ratio of 3a/4a = 2:1 when γ-CD was used as supramolecular host)  

Procedure for selective C-H bond hydroxylation of a 1:1 mixture of 7 and 8 

To a mixture of 7 (0.5 mmol) and 8 (0.5 mmol) and γ-CD (1.1 mmol) in H2O (50 mL) was 

added 1,1,1-trifluoroacetone (1.0 mmol) and stirred for 1 h. Then, 8 portions of a mixture of 

Oxone (2.5 mmol × 8) and NaHCO3 (7.75 mmol × 8) were added within 7 h (one portion was 

added per hour). After stirring for a total of 24 h at room temperature, the resulting mixture 

was extracted with ethyl acetate (100 mL × 4). The combined organic extract was dried over 

anhydrous Na2SO4 and filtered, and the organic solvent was evaporated under reduced 

pressure. Purification by flash column chromatography on silica gel using 5% 

EtOAc/n-hexane as eluent gave product 7a in 13% yield (20 mg) and using 10% 

EtOAc/n-hexane as eluent gave product 8a in 38% yield (58 mg). 

Procedure for C-H bond oxidation of (+)-menthol (9) with β- or γ-CD 

To a mixture of 9 (1.0 mmol) and β- or γ-CD (1.1 mmol) in H2O (50 mL) was added 

1,1,1-trifluoroacetone (1 mmol) and stirred for 1 h. Then, 8 portions of a mixture of Oxone 

(2.5 mmol × 8) and NaHCO3 (7.75 mmol × 8) were added within 7 h (one portion was added 

per hour). After stirring for a total of 24 h at room temperature, the resulting mixture was 

extracted with ethyl acetate (100 mL × 4). The combined organic extract was dried over 

anhydrous Na2SO4 and filtered, and the organic solvent was evaporated under reduced 

pressure. Purification by flash column chromatography on silica gel using 30% 

EtOAc/n-hexane as eluent gave product 9b, using 60% EtOAc/n-hexane as eluent gave 

product 9a, and using 75% EtOAc/n-hexaneas eluent gave product 9c. 
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Fig. S1 Partial 1H NMR spectra of 3a and 4a when β-CD was used as the supramolecular 
host. 

 

 

Fig. S2 Partial 1H NMR spectra of 3a and 4a when γ-CD was used as the supramolecular 
host. 
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1H NMR titration experiments of trans-1,4-dimethylcyclohexane (1) [or 

(1R,2R,5S)-(+)-menthol (9)] with β-CD 

The mixtures of trans-1,4-dimethylcyclohexane (1) [or (1R,2R,5S)-(+)-menthol (9)] with 

β-CD for the 1H NMR titration experiments were prepared by mixing indicated volume of (i) 

1 (or 9) stock solutions [100 mM, 0.1 mmol of 1 (or 9) in 1.0 mL of d6-acetone), (ii) β-CD 

stock solution (4 mM, 0.04 mmol of β-CD in 10 mL of D2O), and (iii) volume of β-CD stock 

solution is ~500 μL (Table S1). 

 

Table S1 

 

Entry 
Molar ratio of  

1 (or 9) : β-CD 

Volume of 1 (or 9)  

stock solutions (μL) 

Volume of β-CD 

stock solution (μL) 

1 0:10 0 500 

2a 1:10 2 500 

3 2:10 4 500 

4 4:10 8 500 

5 6:10 12 500 

6 8:10 16 500 

7 10:10 20 500 

8 12:10 24 500 

9 15:10 30 500 

10 20:10 40 500 

Remarks: In general, the mixtures with high ratio of β-CD are opaque and viscous (entries 1-7) 

while transparent solutions are observed in the mixtures with low ratio of β-CD (entries 8-9). a 

Data of this entry was not used for (1R,2R,5S)-(+)-menthol (9) with β-CD.   

 

The mixtures were subjected to 1H NMR analysis. The changes of the chemical shift of H3 of 

β-CD (with the chemical shift of H4 of β-CD as the internal reference) are obtained as Δδobs 

which is used for the calculation of the binding constant. 

The binding constants (K) of 1 (or 9) to β-CD were calculated by fitting Δδobs into Scott’s 

plot as the equation shown below (R. L. Scott, Recl. Trav. Chim. Pays-Bas, 1956, 75, 787): 

 

[1 (or 9)] / Δδobs = [1 (or 9)] / Δδmax + Δδmax / K 

where [1 (or 9)] is the concentration of 1 (or 9) with normalized concentration of β-CD; Δδobs 

is the observed change of the chemical shift of H3 of β-CD at different concentrations of 1 

(or 9); Δδmax is the maximum change of the chemical shift of H3 of β-CD. 
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Fig. S3 Scott’s plot of 1H NMR titration of 1 and β-CD 

 

 

Fig. S4 Scott’s plot of 1H NMR titration of 9 and β-CD  
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Figure S5. 1H NMR titration curve for 1 and β-CD 

 

 

 

Figure S6. 1H NMR titration curve for 9 and β-CD 
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1H NMR titration experiments of trans-1,4-dimethylcyclohexane (1) [or 

(1R,2R,5S)-(+)-menthol (9)] with γ-CD 

The mixtures of 1 (or 9) with γ-CD for the 1H NMR titration experiments were prepared by 

mixing indicated volume of (i) 1 (or 9) stock solutions (100 mM, 0.1 mmol of 1 (or 9) in 1 

mL of d6-acetone), (ii) γ-CD stock solution (4 mM, 0.04 mmol of γ-CD in 10 mL of D2O), (iii) 

Volume of γ-CD stock solution is ~500 μL (Table S2). 

 

Table S2 

 

Entry 
Mole Ratio of  

1 (or 9) : γ-CD 

Volume of 1 (or 9)  

stock solutions (μL) 

Volume of γ-CD 

stock solution (μL) 

1 0:10 0 500 

2 1:10 2 500 

3 4:10 8 500 

4 7:10 14 500 

5 10:10 20 500 

6 12:10 24 500 

7 15:10 30 500 

8 18:10 36 500 

9 20:10 40 500 

10 25:10 50 500 

11 30:10 60 500 

12 35:10 70 500 

13 40:10 80 500 

Remarks: In general, the mixtures with high ratio of γ-CD are opaque and viscous (entries 1-4) while 

transparent solutions are observed in the mixtures with low ratio of γ-CD (entries 5-13). 
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Figure S7. 1H NMR titration curve for 1 and γ-CD 

 

 

 
 

Figure S8. 1H NMR titration curve for 9 and γ-CD 
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Characterization Data of Compounds 

 

White solid, analytical TLC (silica gel 60, 70% EtOAc in n-hexane), Rf = 0.30; 
1H NMR (400 MHz, d6-DMSO): δ 3.85 (s, 2H), 1.56 (d, J = 8.9 Hz, 4H), 1.27 (d, J = 8.3 Hz, 

4H), 1.07 (s, 6H); 
13C NMR (100 MHz, CD3OD): δ 68.1, 33.9, 29.4. 
 

 

Colorless liquid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), Rf = 0.36; 
1H NMR (400 MHz, CD3OD): δ 1.66 (t, J = 10.9 Hz, 1H), 1.52-1.31 (m, 1H), 1.17 (d, J = 

28.2 Hz, 1H), 1.08 (dd, J = 22.1, 11.6 Hz, 1H), 0.93 (d, J = 6.6 Hz, 1H); 
13C NMR (100 MHz, CDCl3): δ 70.8, 39.8, 32.3, 31.8, 26.0, 21.5. 
 
 

 

Colorless liquid, analytical TLC (silica gel 60, 70% EtOAc in n-hexane), Rf = 0.18; 
1H NMR (400 MHz, d6-DMSO): δ 4.01 (s, 2H), 1.58 (dd, J = 12.5, 8.0 Hz, 4H), 1.25 (dd, J = 

12.2, 7.7 Hz, 4H), 1.06 (s, 6H); 
13C NMR (100 MHz, CDCl3): δ 69.5, 36.3, 27.8. 

 

 

Colorless liquid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), Rf = 0.34; 
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1H NMR (400 MHz, d6-DMSO): δ 4.21 (s, 1H), 1.64-1.46 (m, 4H), 1.45-1.33 (m, 1H), 
1.3-1.12 (m, 2H), 1.08 (s, 3H), 0.96 (t, J = 12.3 Hz, 1H), 0.84 (d, J = 6.5 Hz, 3H), 0.77-0.67 
(m, 1H); 
13C NMR (100 MHz, CDCl3): δ 71.3, 49.5, 40.2, 34.6, 30.6, 26.0, 23.8, 22.6. 
 
 

 

White solid, analytical TLC (silica gel 60, 50% EtOAc in n-hexane), Rf = 0.43; 
1H NMR (400 MHz, d6-DMSO): δ 3.91 (s, 2H), 1.43 (dd, J = 11.6, 5.9 Hz, 2H), 1.39 (s, 2H), 

1.28 (dd, J = 9.8, 5.0 Hz, 4H), 1.11 (s, 6H); 
13C NMR (100 MHz, CD3OD): δ 70.2, 50.7, 48.2, 48.0, 38.7, 28.9, 19.6. 
 

 

 

 

Colorless liquid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), Rf = 0.34; 
1H NMR (400 MHz, d6-DMSO): δ 3.83 (s, 1H), 1.79-1.60 (m, 1H), 1.59-1.40 (m, 4H), 

1.42-1.31 (m, 1H), 1.12-0.96 (m, 4H), 0.85-0.73 (m, 4H), 0.72-0.57 (m, 1H); 
13C NMR (100 MHz, CDCl3): δ 70.0, 47.6, 38.3, 34.4, 31.7, 28.0, 22.5, 21.8. 
 
 

 

White solid, analytical TLC (silica gel 60, 50% EtOAc in n-hexane), Rf = 0.20; 
1H NMR (400 MHz, CD3OD): δ 2.00-1.86 (m, 1H), 1.67 (d, J = 13.0 Hz, 3H), 1.56-1.48 (m, 
1H), 1.40 (d, J = 13.8 Hz, 1H), 1.31 (dt, J = 7.5, 6.3 Hz, 2H), 1.17 (s, 6H); 
13C NMR (100 MHz, CDCl3): δ 71.2, 48.1, 38.3, 31.2, 17.5. 
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Colorless liquid, analytical TLC (silica gel 60; 10% EtOAc in n-hexane), Rf = 0.40; 
1H NMR (400 MHz, CD3OD): δ 1.72-1.54 (m, 3H), 1.53-1.23 (m, 6H), 1.18 (s, 3H), 0.93 (d, 

J = 6.0 Hz, 1H); 
13C NMR (100 MHz, CD3OD): δ 70.5, 40.3, 39.6, 30.2, 27.5, 25.7, 21.7, 14.2. 

 

 

 

Colorless liquid, analytical TLC (silica gel 60; 10% EtOAc in n-hexane), Rf = 0.28; 
1H NMR (400 MHz, d6-DMSO): δ 3.99 (s, 1H), 1.61-1.46 (m, 4H), 1.42-1.31 (m, 1H), 

1.30-1.19 (m, 2H), 1.20-1.06 (m, 1H), 1.04-0.92 (m, 1H), 0.91 (s, 3H), 0.80 (d, J = 6.8 Hz, 

3H); 
13C NMR (100 MHz, d6-DMSO): δ 68.2, 48.0, 38.5, 34.7, 32.4, 27.7, 23.1, 21.8. 
 

 

 

White solid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), Rf = 0.52; 
1H NMR (400 MHz, d6-DMSO): δ 3.51 (s, 1H), 1.67-1.56 (m, 4H), 1.43-1.39 (m, 2H), 

1.36-1.24 (m, 4H), 0.98-0.76 (m, 1H), 1.21-0.99 (m, 1H); 
13C NMR (100 MHz, CDCl3): δ 70.1, 44.2, 39.7, 28.6, 26.3, 21.6. 

 

 

 

White solid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), Rf = 0.38; 
1H NMR (400 MHz, d6-DMSO): δ 3.87 (s, 1H), 1.71-1.49 (m, 5H), 1.49-1.33 (m, 4H), 

1.33-1.06 (m, 8H). 
13C NMR (100 MHz, d6-DMSO): δ 69.9, 42.6, 28.0 (brs), 23.1 (brs).   
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White solid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), Rf = 0.40; 
1H NMR (400 MHz, d6-DMSO): δ 4.11 (d, J = 6.0 Hz, 1H), 3.92 (s, 1H), 3.54-3.40 (m, 1H), 

2.23-2.11 (m, 1H), 1.78 (d, J = 12.2 Hz, 1H), 1.48 (d, J = 12.9 Hz, 1H), 1.27 (d, J = 8.1 Hz, 

2H), 1.17-1.03 (m, 5H), 1.01-0.89 (m, 1H), 4.11 (d, J = 6.0 Hz, 1H), 0.75 (d, J = 6.9 Hz, 3H); 
13C NMR (100 MHz, CDCl3): δ 71.5, 68.5, 50.1, 48.2, 38.4, 31.6, 25.8, 21.0, 19.0, 16.2. 
 
 

 

White solid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), Rf = 0.40; 
1H NMR (400 MHz, CD3OD): δ 3.68 (td, J = 10.5, 4.3 Hz, 1H), 1.94-1.85 (m, 1H), 1.78-1.64 

(m, 2H), 1.54-1.38 (m, 1H), 1.38-1.30 (m, 1H), 1.18 (d, J = 9.7 Hz, 6H), 1.08-0.94 (m, 3H), 

0.92 (d, J = 6.6 Hz, 3H), 0.90-0.80 (m, 1H); 
13C NMR (100 MHz, CD3OD): δ 74.2, 72.4, 52.9, 44.3, 34.4, 31.2, 28.3, 26.5, 22.7, 21.0. 

 

 

 

White solid, analytical TLC (silica gel 60, 70% EtOAc in n-hexane), Rf = 0.16; 
1H NMR (400 MHz, CD3OD): δ 4.10-3.94 (m, 1H), 1.97-1.81 (m, 1H), 1.72-1.58 (m, 1H), 

1.58-1.48 (m, 1H), 1.46-1.29 (m, 4H), 1.22 (s, 3H), 1.20 (s, 3H), 1.19 (s, 3H); 
13C NMR (100 MHz, CDCl3): δ 75.2, 71.1, 69.6, 53.4, 48.0, 38.4, 31.4, 30.2, 23.9, 22.9. 
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1H NMR (400 MHz, d6-DMSO) and 13C NMR (100 MHz, CD3OD) of 1a 
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1H NMR (400 MHz, CD3OD) and 13C NMR (400 MHz, CDCl3) of 2a 
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1H NMR (400 MHz, d6-DMSO) and 13C NMR (100 MHz, CDCl3) of 2b 
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1H NMR (400 MHz, d6-DMSO) and 13C NMR (100 MHz, CDCl3) of 3a 
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1H NMR (400 MHz, CD3OD) and 13C NMR (100 MHz, CD3OD) of 3b 
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1H NMR (400 MHz, CD3OD) and 13C NMR (100 MHz, CDCl3) of 4a 
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1H NMR (400 MHz, CD3OD) and 13C NMR (100 MHz, CDCl3) of 4b 
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1H NMR (400 MHz, CD3OD) and 13C NMR(100 MHz, CD3OD) of 5a 
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1H NMR (400 MHz, d6-DMSO) and 13C NMR (100 MHz, d6-DMSO) of 6a   
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1H NMR (400 MHz, d6-DMSO) and 13C NMR (100 MHz, CDCl3) of 7a 
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1H NMR (400 MHz, d6-DMSO) and 13C NMR (100 MHz, d6-DMSO) of 8a 
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1H NMR (400 MHz, d6-DMSO) and 13C NMR (100 MHz, CDCl3) of 9a 
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1H NMR (400 MHz, CD3OD) and 13C NMR (100 MHz, CD3OD) of 9b 
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1H NMR (400 MHz, CD3OD) and 13C NMR (100 MHz, CDCl3) of 9c 
 

 

 

 


