Selective C-H Bond Hydroxylation of Cyclohexanes in Water by Supramolecular Control

Bin Yang,^{a,b} Jian-Fang Cui*^{a,b} and Man Kin Wong*^{a,b}

- a. The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China.
- b. State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, PR China.

E-mail: mankin.wong@polyu.edu.hk

jian-fang.cui@polyu.edu.hk

Fax: +852 2364 9932

Supporting Information

Literature References

HO	Z. Cohen, E. Keinan, Y. Mazur and T. H. Varkony, J. Org. Chem., 1975, 40, 2141-2142.
1 a	
	S. Lee and P. L. Fuchs, J. Am. Chem. Soc., 2002, 124, 13978-13979.
HO	Z. Cohen, E. Keinan, Y. Mazur and T. H. Varkony, J. Org. Chem., 1975, 40, 2141-2142.
2b	
	K. Maruoka, T. Itoh, M. Sakurai, K. Nonoshita and H. Yamamoto, J. Org. Chem., 2006, 71, 2283-2292.
3a	
,,OH	P. Dai, T. K. Trullinger, X. Liu and P. H. Dussault, J. Org. Chem., 2006, 71, 2283-2292.
4a	
,,,ОН	S. Kasuya, S. Kamijo and M. Inoue, Org. Lett., 2009, 11, 3630-3632.
4b	
С, OH	R. Mello, M. Fiorentino, C. Fusco and R. Curci, <i>J. Am. Chem. Soc.</i> , 1989, 111 , 6749-6757.
5a	D. Malla M. Eismanting, C. Eugas and D. Cumi, I. Am. Cham.
(′′ОН	<i>K.</i> Mello, M. Florentino, C. Fusco and K. Curci, <i>J. Am. Chem.</i> <i>Soc.</i> , 1989, 111 , 6749-6757.
<u>6a</u>	
OH I H	S. Rozen, M. Brand and M. Kol, J. Am. Chem. Soc., 1989, 111, 8325-8326.
7a	

OH H 8a	B. H. Brodsky and J. D. Bois, J. Am. Chem. Soc., 2005, 127, 15391-15393.
	Y. Asakawa, R. Matsuda, M. Tori and T. Hashimoto, <i>Phytochemistry</i> . 1988, 27 , 3861-3869.
но но 9b	Y. Asakawa, R. Matsuda, M. Tori and T. Hashimoto, <i>Phytochemistry</i> , 1988, 27 , 3861-3869.
HO HO 9c	S. G. Musharraf, M. A. Ahmed, R. A. Ali and M. I. Choudhary, <i>Biocatal. Biotransformat.</i> , 2011, 29 , 77-82.

General Methods

All chemicals were purchased from commercially available sources and used without further purification. Flash column chromatography was performed using silica gel 60 (230–400 mesh ASTM) with EtOAc/n-hexane as eluent. ¹H NMR and ¹³C NMR spectra were recorded on Bruker DPX-400. 2D ROESY was recorded on Bruker DPX-600. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s, singlet; brs, broad singlet; d, doublet; dd, double doublet; t, triplet; td, triplet doublet; m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High resolution mass spectra (HR-MS) were obtained on Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS system equipped with an ion spray source in the positive ion mode.

General procedure for C-H bond hydroxylation of cycloalkanes by using β -CD or γ -CD as supramolecular hosts

To a mixture of cyclohexane substrate (1.0 mmol) and β - or γ -CD (1.1 mmol) in H₂O (50 mL) was added 1,1,1-trifluoroacetone (1.0 mmol) and stirred for 1 h. Then, 8 portions of a mixture of Oxone (2.5 mmol × 8) and NaHCO₃ (7.75 mmol × 8) were added within 7 h (one portion was added per hour). After stirring for a total of 24 h at room temperature, the resulting mixture was extracted with ethyl acetate (100 mL × 4). The combined organic extract was dried over anhydrous Na₂SO₄ and filtered, and the organic solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel using 10~20% EtOAc/n-hexane gave monohydroxylation product as colorless oil and using 50~75% EtOAc/n-hexane gave dihydroxylation product as a white solid.

Procedure for selective C-H bond hydroxylation of a 1:1 mixture of 3 and 4

To a mixture of **3** (0.5 mmol) and **4** (0.5 mmol) and β - or γ -CD (1.1 mmol) in H₂O (50 mL) was added 1,1,1-trifluoroacetone (1.0 mmol) and stirred for 1 h. Then, 8 portions of a mixture of Oxone (2.5 mmol × 8) and NaHCO₃ (7.75 mmol × 8) were added within 7 h (one portion was added per hour). After stirring for a total of 24 h at room temperature, the resulting mixture was extracted with ethyl acetate (100 mL × 4). The combined organic extract was dried over anhydrous Na₂SO₄ and filtered, and the organic solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel (15% EtOAc/n-hexane) gave the mixture product of **3a** and **4a** as colorless oil (9% total yield of **3a** and **4a**, the ratio of **3a/4a** = 1:1 when β -CD was used as supramolecular host; 26% total yield of **3a** and **4a**, the ratio of **3a/4a** = 2:1 when γ -CD was used as supramolecular host)

Procedure for selective C-H bond hydroxylation of a 1:1 mixture of 7 and 8

To a mixture of 7 (0.5 mmol) and 8 (0.5 mmol) and γ -CD (1.1 mmol) in H₂O (50 mL) was added 1,1,1-trifluoroacetone (1.0 mmol) and stirred for 1 h. Then, 8 portions of a mixture of Oxone (2.5 mmol × 8) and NaHCO₃ (7.75 mmol × 8) were added within 7 h (one portion was added per hour). After stirring for a total of 24 h at room temperature, the resulting mixture was extracted with ethyl acetate (100 mL × 4). The combined organic extract was dried over anhydrous Na₂SO₄ and filtered, and the organic solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel using 5% EtOAc/n-hexane as eluent gave product **7a** in 13% yield (20 mg) and using 10% EtOAc/n-hexane as eluent gave product **8a** in 38% yield (58 mg).

Procedure for C-H bond oxidation of (+)-menthol (9) with β- or γ-CD

To a mixture of **9** (1.0 mmol) and β - or γ -CD (1.1 mmol) in H₂O (50 mL) was added 1,1,1-trifluoroacetone (1 mmol) and stirred for 1 h. Then, 8 portions of a mixture of Oxone (2.5 mmol × 8) and NaHCO₃ (7.75 mmol × 8) were added within 7 h (one portion was added per hour). After stirring for a total of 24 h at room temperature, the resulting mixture was extracted with ethyl acetate (100 mL × 4). The combined organic extract was dried over anhydrous Na₂SO₄ and filtered, and the organic solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel using 30% EtOAc/n-hexane as eluent gave product **9b**, using 60% EtOAc/n-hexane as eluent gave product **9c**.

Fig. S1 Partial ¹H NMR spectra of 3a and 4a when β -CD was used as the supramolecular host.

Fig. S2 Partial ¹H NMR spectra of 3a and 4a when γ -CD was used as the supramolecular host.

¹H NMR titration experiments of *trans*-1,4-dimethylcyclohexane (1) [or

(1R,2R,5S)-(+)-menthol (9)] with β-CD

The mixtures of *trans*-1,4-dimethylcyclohexane (1) [or (1R,2R,5S)-(+)-menthol (9)] with β -CD for the ¹H NMR titration experiments were prepared by mixing indicated volume of (i) 1 (or 9) stock solutions [100 mM, 0.1 mmol of 1 (or 9) in 1.0 mL of *d*⁶-acetone), (ii) β -CD stock solution (4 mM, 0.04 mmol of β -CD in 10 mL of D₂O), and (iii) volume of β -CD stock solution is ~500 µL (**Table S1**).

Entry	Molar ratio of	Volume of 1 (or 9)	Volume of β-CD
	1 (or 9) : β -CD	stock solutions (µL)	stock solution (μ L)
1	0:10	0	500
2^a	1:10	2	500
3	2:10	4	500
4	4:10	8	500
5	6:10	12	500
6	8:10	16	500
7	10:10	20	500
8	12:10	24	500
9	15:10	30	500
10	20:10	40	500

Table S1

Remarks: In general, the mixtures with high ratio of β -CD are opaque and viscous (entries 1-7) while transparent solutions are observed in the mixtures with low ratio of β -CD (entries 8-9). ^{*a*} Data of this entry was not used for (1R,2R,5S)-(+)-menthol (9) with β -CD.

The mixtures were subjected to ¹H NMR analysis. The changes of the chemical shift of H3 of β -CD (with the chemical shift of H4 of β -CD as the internal reference) are obtained as $\Delta \delta_{obs}$ which is used for the calculation of the binding constant.

The binding constants (K) of **1** (or **9**) to β -CD were calculated by fitting $\Delta \delta_{obs}$ into Scott's plot as the equation shown below (R. L. Scott, *Recl. Trav. Chim. Pays-Bas*, 1956, **75**, 787):

 $[1 \text{ (or 9)}] / \Delta \delta_{\text{obs}} = [1 \text{ (or 9)}] / \Delta \delta_{\text{max}} + \Delta \delta_{\text{max}} / K$

where [1 (or 9)] is the concentration of 1 (or 9) with normalized concentration of β -CD; $\Delta \delta_{obs}$ is the observed change of the chemical shift of H3 of β -CD at different concentrations of 1 (or 9); $\Delta \delta_{max}$ is the maximum change of the chemical shift of H3 of β -CD.

Fig. S3 Scott's plot of ¹H NMR titration of 1 and β -CD

Fig. S4 Scott's plot of ¹H NMR titration of 9 and β -CD

Figure S5. ¹H NMR titration curve for 1 and β -CD

Figure S6. ¹H NMR titration curve for 9 and β -CD

¹H NMR titration experiments of *trans*-1,4-dimethylcyclohexane (1) [or

(1R,2R,5S)-(+)-menthol (9)] with γ-CD

The mixtures of **1** (or **9**) with γ -CD for the ¹H NMR titration experiments were prepared by mixing indicated volume of (i) **1** (or **9**) stock solutions (100 mM, 0.1 mmol of **1** (or **9**) in 1 mL of *d*⁶-acetone), (ii) γ -CD stock solution (4 mM, 0.04 mmol of γ -CD in 10 mL of D₂O), (iii) Volume of γ -CD stock solution is ~500 µL (**Table S2**).

Entry	Mole Ratio of	Volume of 1 (or 9)	Volume of γ-CD
	1 (or 9) : γ-CD	stock solutions (µL)	stock solution (μ L)
1	0:10	0	500
2	1:10	2	500
3	4:10	8	500
4	7:10	14	500
5	10:10	20	500
6	12:10	24	500
7	15:10	30	500
8	18:10	36	500
9	20:10	40	500
10	25:10	50	500
11	30:10	60	500
12	35:10	70	500
13	40:10	80	500

Table S2

Remarks: In general, the mixtures with high ratio of γ -CD are opaque and viscous (entries 1-4) while transparent solutions are observed in the mixtures with low ratio of γ -CD (entries 5-13).

Figure S7. $^1\mathrm{H}$ NMR titration curve for 1 and $\gamma\text{-CD}$

Figure S8. $^1\mathrm{H}$ NMR titration curve for 9 and $\gamma\text{-CD}$

Characterization Data of Compounds

White solid, analytical TLC (silica gel 60, 70% EtOAc in n-hexane), $R_f = 0.30$; ¹H NMR (400 MHz, d⁶-DMSO): δ 3.85 (s, 2H), 1.56 (d, J = 8.9 Hz, 4H), 1.27 (d, J = 8.3 Hz, 4H), 1.07 (s, 6H); ¹³C NMR (100 MHz, CD₃OD): δ 68.1, 33.9, 29.4.

Colorless liquid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), $R_f = 0.36$; ¹H NMR (400 MHz, CD₃OD): δ 1.66 (t, J = 10.9 Hz, 1H), 1.52-1.31 (m, 1H), 1.17 (d, J = 28.2 Hz, 1H), 1.08 (dd, J = 22.1, 11.6 Hz, 1H), 0.93 (d, J = 6.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 70.8, 39.8, 32.3, 31.8, 26.0, 21.5.

Colorless liquid, analytical TLC (silica gel 60, 70% EtOAc in n-hexane), $R_f = 0.18$; ¹H NMR (400 MHz, d⁶-DMSO): δ 4.01 (s, 2H), 1.58 (dd, J = 12.5, 8.0 Hz, 4H), 1.25 (dd, J = 12.2, 7.7 Hz, 4H), 1.06 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 69.5, 36.3, 27.8.

Colorless liquid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), $R_f = 0.34$;

¹**H NMR** (400 MHz, d⁶-DMSO): δ 4.21 (s, 1H), 1.64-1.46 (m, 4H), 1.45-1.33 (m, 1H), 1.3-1.12 (m, 2H), 1.08 (s, 3H), 0.96 (t, J = 12.3 Hz, 1H), 0.84 (d, J = 6.5 Hz, 3H), 0.77-0.67 (m, 1H);

¹³C NMR (100 MHz, CDCl₃): δ 71.3, 49.5, 40.2, 34.6, 30.6, 26.0, 23.8, 22.6.

White solid, analytical TLC (silica gel 60, 50% EtOAc in n-hexane), $R_f = 0.43$; ¹H NMR (400 MHz, d⁶-DMSO): δ 3.91 (s, 2H), 1.43 (dd, J = 11.6, 5.9 Hz, 2H), 1.39 (s, 2H), 1.28 (dd, J = 9.8, 5.0 Hz, 4H), 1.11 (s, 6H); ¹³C NMR (100 MHz, CD₃OD): δ 70.2, 50.7, 48.2, 48.0, 38.7, 28.9, 19.6.

Colorless liquid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), $R_f = 0.34$; ¹H NMR (400 MHz, d⁶-DMSO): δ 3.83 (s, 1H), 1.79-1.60 (m, 1H), 1.59-1.40 (m, 4H), 1.42-1.31 (m, 1H), 1.12-0.96 (m, 4H), 0.85-0.73 (m, 4H), 0.72-0.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 70.0, 47.6, 38.3, 34.4, 31.7, 28.0, 22.5, 21.8.

White solid, analytical TLC (silica gel 60, 50% EtOAc in n-hexane), $R_f = 0.20$; ¹H NMR (400 MHz, CD₃OD): δ 2.00-1.86 (m, 1H), 1.67 (d, J = 13.0 Hz, 3H), 1.56-1.48 (m, 1H), 1.40 (d, J = 13.8 Hz, 1H), 1.31 (dt, J = 7.5, 6.3 Hz, 2H), 1.17 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 71.2, 48.1, 38.3, 31.2, 17.5.

Colorless liquid, analytical TLC (silica gel 60; 10% EtOAc in n-hexane), $R_f = 0.40$; ¹H NMR (400 MHz, CD₃OD): δ 1.72-1.54 (m, 3H), 1.53-1.23 (m, 6H), 1.18 (s, 3H), 0.93 (d, J = 6.0 Hz, 1H);

¹³C NMR (100 MHz, CD₃OD): *δ* 70.5, 40.3, 39.6, 30.2, 27.5, 25.7, 21.7, 14.2.

Colorless liquid, analytical TLC (silica gel 60; 10% EtOAc in n-hexane), $R_f = 0.28$;

¹**H NMR** (400 MHz, d⁶-DMSO): δ 3.99 (s, 1H), 1.61-1.46 (m, 4H), 1.42-1.31 (m, 1H), 1.30-1.19 (m, 2H), 1.20-1.06 (m, 1H), 1.04-0.92 (m, 1H), 0.91 (s, 3H), 0.80 (d, *J* = 6.8 Hz, 3H);

¹³C NMR (100 MHz, d⁶-DMSO): δ 68.2, 48.0, 38.5, 34.7, 32.4, 27.7, 23.1, 21.8.

White solid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), $R_f = 0.52$; ¹H NMR (400 MHz, d⁶-DMSO): δ 3.51 (s, 1H), 1.67-1.56 (m, 4H), 1.43-1.39 (m, 2H), 1.36-1.24 (m, 4H), 0.98-0.76 (m, 1H), 1.21-0.99 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 70.1, 44.2, 39.7, 28.6, 26.3, 21.6.

White solid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), $R_f = 0.38$; ¹H NMR (400 MHz, d⁶-DMSO): δ 3.87 (s, 1H), 1.71-1.49 (m, 5H), 1.49-1.33 (m, 4H), 1.33-1.06 (m, 8H).

¹³C NMR (100 MHz, d⁶-DMSO): δ 69.9, 42.6, 28.0 (brs), 23.1 (brs).

White solid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), $R_f = 0.40$; ¹H NMR (400 MHz, d⁶-DMSO): δ 4.11 (d, J = 6.0 Hz, 1H), 3.92 (s, 1H), 3.54-3.40 (m, 1H), 2.23-2.11 (m, 1H), 1.78 (d, J = 12.2 Hz, 1H), 1.48 (d, J = 12.9 Hz, 1H), 1.27 (d, J = 8.1 Hz, 2H), 1.17-1.03 (m, 5H), 1.01-0.89 (m, 1H), 4.11 (d, J = 6.0 Hz, 1H), 0.75 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 71.5, 68.5, 50.1, 48.2, 38.4, 31.6, 25.8, 21.0, 19.0, 16.2.

White solid, analytical TLC (silica gel 60, 10% EtOAc in n-hexane), $R_f = 0.40$; ¹H NMR (400 MHz, CD₃OD): δ 3.68 (td, J = 10.5, 4.3 Hz, 1H), 1.94-1.85 (m, 1H), 1.78-1.64 (m, 2H), 1.54-1.38 (m, 1H), 1.38-1.30 (m, 1H), 1.18 (d, J = 9.7 Hz, 6H), 1.08-0.94 (m, 3H), 0.92 (d, J = 6.6 Hz, 3H), 0.90-0.80 (m, 1H);

¹³C NMR (100 MHz, CD₃OD): *δ* 74.2, 72.4, 52.9, 44.3, 34.4, 31.2, 28.3, 26.5, 22.7, 21.0.

White solid, analytical TLC (silica gel 60, 70% EtOAc in n-hexane), $R_f = 0.16$; ¹H NMR (400 MHz, CD₃OD): δ 4.10-3.94 (m, 1H), 1.97-1.81 (m, 1H), 1.72-1.58 (m, 1H), 1.58-1.48 (m, 1H), 1.46-1.29 (m, 4H), 1.22 (s, 3H), 1.20 (s, 3H), 1.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 75.2, 71.1, 69.6, 53.4, 48.0, 38.4, 31.4, 30.2, 23.9, 22.9.

¹H NMR (400 MHz, CD₃OD) and ¹³C NMR (400 MHz, CDCl₃) of **2a**

^1H NMR (400 MHz, d⁶-DMSO) and ^{13}C NMR (100 MHz, CDCl₃) of 2b

¹H NMR (400 MHz, d⁶-DMSO) and ¹³C NMR (100 MHz, CDCl₃) of **3a**

^1H NMR (400 MHz, CD₃OD) and ^{13}C NMR (100 MHz, CD₃OD) of 3b

¹H NMR (400 MHz, CD₃OD) and ¹³C NMR (100 MHz, CDCl₃) of 4a

¹H NMR (400 MHz, CD₃OD) and ¹³C NMR (100 MHz, CDCl₃) of 4b

 $^{1}\mathrm{H}$ NMR (400 MHz, d⁶-DMSO) and $^{13}\mathrm{C}$ NMR (100 MHz, d⁶-DMSO) of **6a**

¹H NMR (400 MHz, d⁶-DMSO) and ¹³C NMR (100 MHz, CDCl₃) of 7a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, d⁶-DMSO) and ¹³C NMR (100 MHz, CDCl₃) of 9a

^1H NMR (400 MHz, CD₃OD) and ^{13}C NMR (100 MHz, CDCl₃) of 9c