Electronic supplementary information (ESI)

Controlled synthesis of Sn-based oxides via a hydrothermal method and their

visible light photocatalytic performances

Jinghui Wang^a, Hui Li^a, Sugang Meng^a, Xiangju Ye^{*b}, Xianliang Fu^{*a}, Shifu Chen^{a, b}

- ^a College of Chemistry and Material Science, Huaibei Normal University, Huaibei, Anhui, 235000, China. Email: fuxiliang@gmail.com
- ^b Department of Chemistry, Anhui Science and Technology University, Fengyang, Anhui, 233100 China. Email: yexiangju555@126.com

Fig. S1 The picture of the reaction system for the photocatalytic degradation of MO under visible light irradiation ($\lambda > 400$ nm).

Fig. S2 (a) XPS survey spectrum and (b) high-resolution O 1s of the prepared SnO_2 , $Sn^{2+}-SnO_2$ (prepared at 160 °C), SnO/SnO_2 (prepared in 3 g urea added solution), and SnO.

Fig. S3 The time dependent UV-vis absorption spectrum of MO solution during the degradation performed over $Sn^{2+}-SnO_2$ prepared at (a) 120, (b) 140, (c) 160, (d) 180, and (e) 200 °C and (f) the prepared SnO_2 . (g) and (h) shows the comparison test without using any photocatalyst or light.

Fig. S4 The time dependent UV-vis absorption spectrum of MO solution during the degradation performed over SnO/SnO_2 prepared in different urea-containing solutions (a) 0.5, (b) 1.0, (c) 2.0, (d) 3.0 g, and (e) the prepared SnO.

Fig. S5 Chemical structure of MO and its UV-vis absorption spectrum.

Fig. S6 schematic band structures of the prepared SnO/SnO₂ and Sn²⁺-SnO₂.

The valence band potentials (E_{vb}) of the prepared SnO and SnO₂ were calculated by a commonly used empirical equation:

$E_{vb} = X-4.5+0.5E_{g}$

Where X is the electronegativity of SnO and SnO₂ and the corresponding value is 5.68 and 6.24 eV¹, E_g is the band gap energy of SnO and SnO₂. Consequently, the conduction band potentials (E_{cb}) of the samples can be determined from:

$E_{cb} = E_{vb} - E_g$

As for Sn^{2+} -doped SnO_2 , Fan's work indicated that the doping energy levels were located above the top of E_{vb} .² The specific location of the energy levels cannot be certain at present and they should be determined by the doping content of Sn^{2+} .

- (1) Xia, W.; Wang, H.; Zeng, X.; Han, J.; Zhu, J.; Zhou, M.; Wu, S. CrystEngComm 2014, 16, 6841-6847.
- (2) Fan, C. M.; Peng, Y.; Zhu, Q.; Lin, L.; Wang, R. X.; Xu, A. W. J. Phys. Chem. C 2013, 117, 24157-24166.

Fig. S7 The time dependent fluorescence spectra of the formed TAOH under visible light irradiation: over the (a-e) $Sn^{2+}-SnO_2$ prepared at different temperatures, (f-k) SnO/SnO_2 prepared in different urea-containing solutions, (i) SnO, (m) SnO_2 , and the comparison test without (n) photocatalyst or (o) light.

