<Supporting Information>

Influence of Integrated Microstructure on Performance of LiNi_{0.8}Co_{0.15}Al_{0.05}O₂

as Cathodic Material for Lithium Ion Batteries

Yongjie Chen,^{ab} Ping Li, ^a Sijia zhao ^a, Yan Zhuang,^{ab} Shiyong Zhao,^c Qun Zhou, * ^a Junwei

Zheng*ab

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.

^b College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, P. R. China.

^c Zhangjiagang Guotai Huarong New Chemical Material Co., Ltd, Zhangjiagang, P. R. China

E-mail address: jwzheng@suda.edu.cn (Junwei Zheng), zhq@suda.edu.cn (Qun Zhou)

Figure S1 The Ni 2p XPS spectrum of LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ powders.

Figure S2 (a) Particle size distribution of SD-LNCA; (b) nitrogen adsorption/desorption isotherms of CD-LNCA and SD-LNCA; (d) the insert illustrates the pore size distribution of SD-LNCA.

Figure S3 SEM graphs of SD-NCA after different CV cycles: (a) the first cycle; (b) the third

cycle

Figure S4 SEM graphs of SD-NCA (a) before and (b) after 100 cycles at 1C.