

Figure S1. XPS C1s (c, d) and N1s (e, f) spectra and contact angle (g, h) of

NH<sub>2</sub>-terminated (a) and DOPA-terminated (b) surfaces, respectively.



Figure S2. Comparison between average adhesion forces of DOPA-terminated and

NH2-terminated AFM tip on SAM functionalized surfaces.

| Different surface                 | Surface potential (mV) |
|-----------------------------------|------------------------|
| SAM-OH                            | -36.18                 |
| SAM-COOH                          | -37.72                 |
| SAM-NH <sub>2</sub>               | -33.91                 |
| Bare Au                           | -40.25                 |
| SAM-C <sub>6</sub> H <sub>5</sub> | -28.43                 |
| SAM-CF <sub>3</sub>               | -36.96                 |
| SAM-CH <sub>3</sub>               | -31.21                 |
| DOPA-modified AFM tip             | -44.96                 |

## Table S1. Surface potentials of different surfaces

| <b>Table S2.</b> Fitting parameters of EDLVO model for the interactions between DOPA |
|--------------------------------------------------------------------------------------|
| and bare Au, OH-, COOH-, NH2- C6H5-, CH3-, and CF3-terminated surface,               |

|             | Substrate               |                        |                        |                        |                                   |                        |                       |
|-------------|-------------------------|------------------------|------------------------|------------------------|-----------------------------------|------------------------|-----------------------|
| Parameter   | SAM-OH                  | SAM-COOH               | SAM-NH <sub>2</sub>    | Au                     | SAM-C <sub>6</sub> H <sub>5</sub> | SAM-CH <sub>3</sub>    | SAM-CF <sub>3</sub>   |
| $C_1$       | 4.457                   | 1.589                  | 4.653                  | 4.558                  | 8.125×10 <sup>8</sup>             | 123.8                  | 5.128×10 <sup>3</sup> |
| $\lambda_1$ | 0.7281                  | 1.063                  | 0.6626                 | 0.5952                 | 4.269                             | 0.3357                 | 3.412                 |
| $b_1$       | -4.471×10 <sup>-2</sup> | -0.1512                | 8.063×10 <sup>-2</sup> | -0.1216                | -18.01                            | 90.24                  | -9.248                |
| $C_2$       | 1.192                   | -0.1109                | 2.847                  | 1.565                  | -1.972                            | 2.047                  | -0.8661               |
| $\lambda_2$ | 1.257                   | 1.117                  | 2.266                  | 2.222                  | 111                               | 3.872                  | 1.016                 |
| $b_2$       | 0.8332                  | 5.011                  | -0.1301                | -0.1994                | -106.7                            | 7.928×10 <sup>-3</sup> | -0.4058               |
| $C_3$       | -1.19                   | -0.2452                | -3.206                 | -0.3169                | -1.907×10 <sup>4</sup>            | 0.4858                 | -0.5219               |
| $\lambda_3$ | 27.92                   | 0.9286                 | 15.46                  | 7.362                  | 34.63                             | 17.64                  | -0.5233               |
| $b_3$       | 75.73                   | 3.841                  | -10.81                 | 4.185                  | -104                              | 94.18                  | -16.37                |
| $C_4$       | -1.256                  | 1.444                  | 1.201                  | 1.191×10-2             | 5.467                             | 0.2744                 | -5.851                |
| $\lambda_4$ | 32.34                   | 3.091                  | 10.65                  | 0.3858                 | 4.946                             | 19.91                  | 4.851                 |
| $b_4$       | 44.39                   | 0.7676                 | 0.5817                 | 27.06                  | -1.539                            | 72.44                  | -2.053                |
| $C_5$       | 1.93                    | -0.5111                | _                      | 8.260×10-3             | -                                 | 0.7178                 | 5.759                 |
| $\lambda_5$ | 48.56                   | 1.387                  | -                      | 0.8353                 | -                                 | 44.79                  | 3.831                 |
| $b_5$       | 62.27                   | 2.323                  | _                      | 35.02                  | _                                 | 37.36                  | -0.5219               |
| $C_6$       | 0.3988                  | 2.598×10 <sup>-2</sup> | -                      | 8.691×10 <sup>-3</sup> | -                                 | 3.405                  | -                     |
| $\lambda_6$ | 1.946                   | 6.427                  | _                      | 3.049                  | _                                 | 1.136                  | _                     |

respectively.

| $b_6$       | 2.154  | 5.496                  | - | 31.09 | - | -0.1108               | - |  |
|-------------|--------|------------------------|---|-------|---|-----------------------|---|--|
| $C_7$       | -968.7 | 2.149×10 <sup>-3</sup> | _ | _     | _ | -1.252                | _ |  |
| $\lambda_7$ | 164.8  | 5.184                  | - | -     | - | 2.595×10 <sup>4</sup> | _ |  |
| $b_7$       | -464.8 | 26.17                  | _ | _     | _ | 1.81×10 <sup>4</sup>  | _ |  |
| $C_8$       | _      | 1.929×10-2             | - | -     | _ | -0.3242               | — |  |
| $\lambda_8$ | _      | 134.8                  | _ | _     | _ | 5.073                 | _ |  |
| $b_8$       | _      | 6.401                  | - | -     | _ | 7.984                 | _ |  |

To measure the thickness of self-assembled monolayers, a spectroscopic ellipsometer (M-2000V, J.A. Woollam) has been carried out at an incidence angle of 70° and with a wavelength scan from 370.1 to 999.1 nm. The monolayer thickness of each surface using ellipsometry was in the range of 1.0~1.3 nm (Table S3), so the thickness of the monolayer is approximately the same. The depth of XPS test is 10 nm, and the ratio of peak intensities of S  $2p_{3/2}$  and Au elements on each surface was in the range of 0.048~0.055 (Table S3), evaluated by equation (1)<sup>1</sup>. It indicates that the density of the functional groups modified on each surface is almost the same, forming a uniform monomolecular layer, respectively.

$$\frac{N_{S2p_{3/2}}}{N_{Au}} = \frac{I_{S2p_{3/2}} \times S_{Au}}{I_{Au} \times S_{S2p_{3/2}}}$$
(1)

where  $I_{S2p_{3/2}}$  and  $I_{Au}$  represent each peak intensity;  $S_{S2p_{3/2}}$  and  $S_{Au}$  are the respective sensitivity factors.

Table S3. Thickness of each monolayer through ellipsometry and atomic ratio of S

| surface                           | thickness (nm) | $N_{\rm S}2p_{3/2}/N_{\rm Au}$ |
|-----------------------------------|----------------|--------------------------------|
| SAM-OH                            | 1.1            | 0.050                          |
| SAM-COOH                          | 1.2            | 0.048                          |
| SAM-NH <sub>2</sub>               | 1.1            | 0.049                          |
| SAM-C <sub>6</sub> H <sub>5</sub> | 1.0            | 0.052                          |
| SAM-CH <sub>3</sub>               | 1.3            | 0.049                          |
| SAM-CF <sub>3</sub>               | 1.2            | 0.055                          |

 $2p_{3/2}$  versus Au on each surface.

(1) Petrovykh, D. Y.; Kimurasuda, H.; Tarlov, M. J.; Whitman, L. J. Quantitative Characterization

of DNA Films by X-ray Photoelectron Spectroscopy. Langmuir 2004, 20 (2), 429-440.