Electronic Supplementary Information

Lewis Base-Catalyzed Diastereoselective [3 + 2] Cycloaddition Reaction of Nitrones with Electron-Deficient Alkenes: An Access to Isoxazolidine Derivatives

Honglei Liu, Yan Zhao, Zhen Li, Hao Jia, Cheng Zhang, Yumei Xiao and Hongchao Guo*

Contents

General Information	S2
Preparation of Nitrones 1	S2
General Procedure for the [3 + 2] Annulation Reactions	S2
Characterization Data of the Products 3	S2–S9
General Procedure for the Synthesis of 4 and 5	S10
Characterization Data of the Products 4 and 5	S10
¹ H and ¹³ C NMR Spectra of All Products 3–5	S11–S34
X-Ray Crystallographic Data	S35–S45

General Information

All reactions were performed under a N₂ atmospheres in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents were purified and dried according to standard methods prior to use. Reactions were monitored through thin layer chromatography (TLC) on silica gel–precoated glass plates (0.25 mm thickness). Chromatograms were visualized by fluorescence quenching under UV light at 254 nm. Flash column chromatography was performed using flash silica gel (200–300 mesh). ¹H and ¹³C NMR spectra were recorded in CDCl₃ using a 300M spectrometer, as indicated. Accurate mass measurements were performed with the ESI-MS technique.

Nitrones were prepared according to the literature procedures.¹

General Procedure for the [3 + 2] Annulation Reactions

An oven-dried 15 mL of Schlenk tube was charged with Nitrone (0.20 mmol), catalyst (0.04 mmol) and vinyl sulfones (0.24 mmol) at room temperature. Then, 5 mL of CH₂Cl₂ was added and the mixture was stirred at room temperature for 48 h. The reaction mixture was concentrated and the residue was purified by flash column (ethyl acetate/ petroleum ether) to afford the corresponding cycloaddition product.

2-Methyl-3-phenyl-4,5-bis(phenylsulfonyl)isoxazolidine (3a)

99% yield (87.8 mg); white solid; m.p. $171 - 173 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃): δ 7.96 – 7.93 (m, 2H), 7.80 – 7.77 (m, 2H), 7.73 – 7.68 (m, 1H), 7.62 – 7.56 (m, 3H), 7.49 – 7.43 (m, 2H), 7.29 – 7.22 (m, 5H), 5.33 (d, *J* = 3.6 Hz, 1H), 4.82 (dd, *J* = 3.6, 8.4 Hz, 1H), 4.02 (d, *J* = 8.4 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.3, 136.2, 134.5, 134.4, 134.0, 129.5, 129.4, 129.1, 129.0, 128.8, 128.49, 128.48, 91.6, 74.4, 74.2,42.7; HRMS (ESI) calcd for C₂₂H₂₁NO₅S₂Na⁺ [M + Na]⁺ 466.0753, found 466.0750; IR (film) v_{max}: 3065, 2966, 2876, 1585, 1495, 1479, 1448, 1311, 1179, 1152, 1108, 1085, 1061, 1025, 999, 951, 843, 802, 755, 725, 688, 638, 606, 588, 573, 559, 530 cm⁻¹.

¹ H. Zheng, R. McDonald and D. G. Hall, *Chem. Eur. J.*, 2010, **16**, 5454.

2-Methyl-4,5-bis(phenylsulfonyl)-3-o-tolylisoxazolidine (3b)

81% yield (74.1 mg); white solid; m.p. 144 – 146 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.91 – 7.88 (m, 2H), 7.80 – 7.77 (m, 2H), 7.72 – 7.46 (m, 4H), 7.51 – 7.46 (m, 3H), 7.18 – 7.09 (m, 3H), 5.24 (d, *J* = 3.9 Hz, 1H), 4.88 (dd, *J* = 3.9, 8.7 Hz, 1H), 4.52 (d, *J* = 8.7 Hz, 1H), 2.55 (s, 3H), 2.45 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.5, 136.3, 134.5, 134. 3, 132.0, 130.7, 129.5, 129.4, 129.1, 128.7, 128.3, 128.1, 126.8, 91.9, 74.5, 69.0, 42.4, 19.6; HRMS (ESI) calcd for C₂₃H₂₄NO₅S₂⁺ [M + H]⁺ 458.1090, found 458.1086; IR (film) v_{max}: 3064, 2965, 2921, 1585, 1495, 1448, 1323, 1179, 1152, 1107, 1085, 1061, 999, 954, 864, 843, 794, 754, 722, 687, 632, 608, 588, 559, 503 cm⁻¹.

2-Methyl-4,5-bis(phenylsulfonyl)-3-m-tolylisoxazolidine (3c)

74% yield (67.7 mg); white solid; m.p. 112 – 114 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.95 (d, *J* = 7.5 Hz, 2H), 7.79 (d, *J* = 7.5 Hz, 2H), 7.78 – 7.68 (m, 1H), 7.61 – 7.56 (m, 3H), 7.49 – 7.44 (m, 2H), 7.12 – 7.03 (m, 3H), 6.96 (s, 1H), 5.33 (d, *J* = 3.6 Hz, 1H), 4.83 – 4.79 (m, 1H), 3.95 (d, *J* = 8.4 Hz, 1H), 2.55 (s, 3H), 2.25 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 138.4, 137.4, 136.4, 134.5, 134.4, 133.9, 129.8, 129.6, 129.3, 129.1, 129.0, 128.7, 128.6, 125.6, 74.4, 74.3, 42.7; HRMS (ESI) calcd for C₂₃H₂₄NO₅S₂⁺ [M + H]⁺ 458.1090, found 458.1085; IR (film) v_{max}: 3064, 2965, 2923, 2875, 1724, 1609, 1585, 1490, 1479, 1448, 1402, 1325, 1152, 1108, 1086, 1062, 1024, 999, 958, 909, 842, 787, 753, 726, 688, 650, 594, 578, 553, 524 cm⁻¹.

2-Methyl-4,5-bis(phenylsulfonyl)-3-p-tolylisoxazolidine (3d)

69% yield (63.1 mg); white solid; m.p. 134 – 136 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.93 (d, *J* = 7.4 Hz, 2H), 7.80 (d, *J* = 7.4 Hz, 2H), 7.73 – 7.68 (m, 1H), 7.62 – 7.55 (m, 3H), 7.50 – 7.46 (m, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 5.29 (d, *J* = 3.5 Hz, 1H), 4.78 (dd, *J* = 3.5, 8.4 Hz, 1H), 4.01 (d, *J* = 8.4 Hz, 1H), 2.54 (s, 3H), 2.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 138.9, 137.5, 136.3, 134.5, 134.4, 131.0, 129.6, 129.5, 129.4, 129.1, 128.6, 128.4, 91.7, 74.4, 73.9, 42.6; HRMS (ESI) calcd for C₂₃H₂₄NO₅S₂⁺ [M + H]⁺ 458.1090, found 458.1085; IR (film) v_{max}: 3063, 2966, 2922, 2876, 1614, 1585, 1516, 1479, 1448, 1324, 1180, 1152, 1107, 1085, 1061, 1023, 999, 953, 847, 797, 753, 728, 688, 642, 608, 588, 572, 558, 526 cm⁻¹.

3-(2,4-Dimethylphenyl)-2-methyl-4,5-bis(phenylsulfonyl)-iso-xazolidine (3e)

90% yield (84.9 mg); white solid; m.p. 120 – 122 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.89 – 7.86 (m, 2H), 7.80 – 7.77 (m, 2H), 7.71 – 7.46 (m,6H), 7.35 – 7.26 (m, 1H), 6.97 – 6.93 (m, 2H), 5.22 (d, *J* = 3.9 Hz, 1H), 4.84 (dd, *J* = 3.9, 8.8 Hz, 1H), 4.51 (d, *J* = 8.8 Hz, 1H), 2.53 (s, 3H), 2.41 (s, 3H), 2.27 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 138.4, 137.5, 137.3, 136.3, 134.4, 134.3, 131.4, 129.4, 129.3, 129.0, 128.8, 128.3, 127.9, 127.5, 92.00, 74.4, 68.8, 42.2, 26.8, 21.0, 19.5; HRMS (ESI) calcd for C₂₄H₂₆NO₅S₂⁺ [M + H]⁺ 472.1247, found 472.1242; IR (film) v_{max}: 3064, 2966, 2923, 1615, 1585, 1506, 1448, 1323, 1152, 1107, 1085, 1061, 999, 950, 848, 820, 799, 752, 688, 610, 591, 575, 559, 504 cm⁻¹.

3-(3,4-Dimethylphenyl)-2-methyl-4,5-bis(phenylsulfonyl)-isoxazolidine (3f)

87% yield (82.1 mg); white solid; m.p. 130 – 132 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.95 – 9.92 (m, 2H), 7.81 – 7.78 (m, 2H), 7.72 – 7.67 (m, 1H), 7.63 – 7.54 (m, 3H), 7.49 – 7.44 (m, 2H), 7.00 – 6.94 (m, 2H), 6.91 (s, 1H), 5.30 (d, *J* = 3.6 Hz, 1H), 4.78 (dd, *J* = 3.6, 8.5 Hz, 1H), 3.94 (d, *J* = 8.5 Hz, 1H), 2.53 (s, 3H), 2.19 (s, 3H), 2.15 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.5, 137.3, 136.8, 136.3, 134.34, 134.30, 131.2, 129.9, 129.5, 129.4, 129.2, 129.0, 128.6, 125.8, 91.6, 77.2, 74.3, 74.0, 42.6, 19.6, 19.4; HRMS (ESI) calcd for C₂₄H₂₆NO₅S₂⁺ [M + H]⁺ 472.1247, found 472.1242; IR (film) v_{max}: 3064, 2966, 2923, 1585, 1505, 1448, 1323, 1180, 1152, 1107, 1085, 1062, 1024, 1000, 845, 798, 753, 688, 597, 581, 560 cm⁻¹.

3-(2-Methoxyphenyl)-2-methyl-4,5-bis(phenylsulfonyl)iso-xazolidine (3g)

76% yield (72.0 mg); white solid; m.p. $172 - 174 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃): δ 7.99 (d, $J = 7.4 \,^{Hz}$, 2H), 7.78 – 7.67 (m, 3H), 7.61 – 7.48 (m, 3H), 7.41 – 7.33 (m, 3H), 7.19 – 7.13 (m, 1H), 6.85 (t, $J = 7.4 \,^{Hz}$, 1H), 6.65 (d, $J = 8.2 \,^{Hz}$, 1H), 5.41 (d, $J = 3.8 \,^{Hz}$, 1H), 5.09 – 5.05 (m, 1H), 4.59 (d, $J = 8.9 \,^{Hz}$, 1H), 3.74 (s, 3H), 2.53 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.4, 136.6, 134.3, 134.2, 130.1, 129.51, 129.46, 129.1, 128.9, 128.5, 121.1, 120.9, 110.6, 91.3, 73.0, 67.2, 55.3, 42.7; HRMS (ESI) calcd for C₂₃H₂₄NO₆S₂⁺ [M + H]⁺ 474.1074, found 474.1037; IR (film) v_{max}: 3065, 2966, 2843, 1603, 1586, 1497, 1448, 1402, 1325, 1291, 1253, 1152, 1108, 1085, 1052, 1026, 999, 950, 869, 840, 793, 755, 687, 631, 595, 574, 548, 532 cm⁻¹.

3-(3-Methoxyphenyl)-2-methyl-4,5-bis(phenylsulfonyl)iso-xazolidine (3h)

80% yield (75.8 mg); white solid; m.p. $152 - 154 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃): δ 7.96 – 7.92 (m, 2H), 7.82 – 7.79 (m, 2H), 7.72 – 7.67 (m, 1H), 7.63 – 7.54 (m, 3H), 7.50– 7.45 (m, 2H), 7.15 – 7.09 (m, 1H), 6.92 – 6.91 (m, 1H), 6.83 – 6.77 (m, 2H), 5.32 (d, *J* = 3.5 Hz, 1H), 4.83 (dd, *J* = 3.5, 8.3 Hz, 1H), 3.98 (d, *J* = 8.3 Hz, 1H), 3.77 (s, 3H), 2.56 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 159.7, 140.3, 137.3, 136.1, 135.6, 134.9, 134.5, 134.4, 129.8, 129.7, 129.4, 129.1, 128.5, 128.4, 120.7, 114.9, 113.6, 91.6, 74.4, 74.0, 55.2, 42.7; HRMS (ESI) calcd for C₂₃H₂₄NO₆S₂⁺ [M + H]⁺ 474.1074, found 474.1037; IR (film) v_{max}: 3065, 3004, 2964, 2878, 1603, 1586, 1489, 1448, 1403, 1323, 1261, 1151, 1108, 1085, 1060, 999, 906, 878, 796, 751, 688, 605, 586, 525 cm⁻¹.

3-(4-Methoxyphenyl)-2-methyl-4,5-bis(phenylsulfonyl)iso-xazolidine (3i)

63% yield (59.7 mg); white solid; m.p. 149 – 151 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.95 – 7.92 (m, 2H), 7.81 – 7.78 (m, 2H), 7.73 – 7.68 (m, 1H), 7.62 – 7.55 (m, 3H), 7.51 – 7.48 (m, 2H), 7.20 (d, *J* = 8.7 Hz, 2H), 6.76 (d, *J* = 8.7 Hz, 2H), 5.30 (d, *J* = 3.6 Hz, 1H), 4.76 (dd, *J* = 3.6, 8.4 Hz, 1H), 3.99 (d, *J* = 8.4 Hz, 1H), 3.77 (s, 3H), 2.54 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 160.0, 137.4, 136.2, 134.5, 134.3, 129.6, 129.5, 129.4, 129.1, 128.5, 125.8, 114.1, 91.6, 74.2, 73.6, 55.2, 42.5; HRMS (ESI) calcd for C₂₃H₂₄NO₆S₂⁺ [M + H]⁺ 474.1074, found 474.1040; IR (film) v_{max}: 3065, 3004, 2961, 2925, 1613, 1585, 1515, 1448, 1310, 1252, 1177, 1152, 1107, 1085, 1061, 1030, 999, 953, 912, 848, 828, 799, 754, 731, 688, 638, 609, 588, 559, 545, 525 cm⁻¹.

3-(2,3-Dimethoxyphenyl)-2-methyl-4,5-bis(phenylsulfonyl)-isoxazolidine (3j)

77% yield (77.6 mg); white solid; m.p. 128 – 130 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.91 – 7.82 (m, 4H), 7.70 – 7.45 (m, 6H), 7.08 – 6.96 (m, 2H), 6.84– 6.81 (m, 1H), 5.26 (d, *J* =3.8 Hz, 1H), 5.00 (dd, *J* = 3.8, 8.8 Hz, 1H), 4.72 (d, *J* = 8.8 Hz, 1H), 3.93 (s, 3H), 3.83 (s, 3H), 2.55 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 152.5, 148.2, 137.3, 136.4, 134.30, 134.25, 129.4, 129.2, 129.0, 128.6, 126.9, 124.3, 120.4, 112.9, 91.8, 77.2, 73.5, 66.7, 61.1, 55.7, 42.6; HRMS (ESI) calcd for C₂₄H₂₆NO₇S₂⁺ [M + H]⁺ 504.1145, found 504.1140; IR (film) v_{max}: 3064, 2942, 2840, 1587, 1483, 1448, 1324, 1271, 1224, 1152, 1085, 1001, 910, 785, 755, 725, 688, 606, 588, 557, 512 cm⁻¹.

3-(2,4-Dimethoxyphenyl)-2-methyl-4,5-bis(phenylsulfonyl)-isoxazolidine (3k)

75% yield (75.5 mg); white solid; m.p. 171 – 173 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.99 – 7.96 (m, 2H), 7.79 – 7.76 (m, 2H), 7.72 – 7.67(m, 1H), 7.60 – 7.51 (m, 3H), 7.41 – 7.36 (m, 2H), 7.32 – 7.27 (m, 1H), 6.38 (dd, *J* = 2.4, 8.7 Hz, 1H), 6.21 (d, *J* = 2.4 Hz, 1H), 5.39 (d, *J* = 3.8 Hz, 1H), 5.04 (dd, *J* = 8.7, 3.8 Hz, 1H), 4.47 (t, *J* = 9.8 Hz, 1H), 3.75 (s, 3H), 3.72 (s, 3H), 2.51 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 161.2, 158.6, 137.4, 136.6, 134.2, 134.1, 130.4, 129.5, 129.0, 128.8, 128.5, 113.2, 105.2, 98.2, 91.3, 77.2, 72.6, 67.2, 55.30, 55.26, 42.6, 29.6; HRMS (ESI) calcd for C₂₄H₂₆NO₇S₂⁺ [M + H]⁺ 504.1145, found 504.1142; IR (film) v_{max}: 3064, 2963, 2926, 2853, 1737, 1613, 1587, 1511, 1448, 1422, 1377, 1310, 1265, 1211, 1181, 1149, 1106, 1085, 1033, 937, 798, 755, 733, 687, 636, 609, 585, 545 cm⁻¹.

2-Methyl-4,5-bis(phenylsulfonyl)-3-(2,3,4-trimethoxyphenyl) isoxazolidine (31)

78% yield (83.2 mg); white solid; m.p. 132 – 134 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.94 – 7.91 (m, 2H), 7.86 – 7.82 (m, 2H), 7.72 – 7.66 (m, 1H), 7.62 – 7.54 (m, 3H), 7.50 – 7.44 (m, 2H), 7.15 (d, *J* = 8.8 Hz, 1H), 6.60 (d, *J* = 8.8 Hz, 1H), 5.30 (d, *J* = 3.9 Hz, 1H), 5.02 (dd, *J* = 3.9, 8.8 Hz, 1H), 4.54 (d, *J* = 8.8 Hz, 1H), 3.95 (s, 3H), 3.83 (s, 3H), 3.79 (s, 3H), 2.55 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 154.2, 152.7, 141.7, 137.5, 136.5, 134.2, 129.4, 129.2, 129.0, 128.6, 124.0, 118.7, 107.7, 91.6, 77.2, 73.0, 67.5, 61.3, 60.6, 55.9, 42.6; HRMS (ESI) calcd for C₂₅H₂₈NO₈S₂⁺ [M + H]⁺ 534.1251, found 534.1252; IR (film) v_{max}: 3064, 2941, 2840, 1600, 1498, 1469, 1448, 1420, 1310, 1298, 1234, 1152, 1097, 1063, 1023, 962, 903, 798, 753, 725,688, 607, 585, 549 cm⁻¹.

N,N-Dimethyl-4-(2-methyl-4,5-bis(phenylsulfonyl)isoxazoli-din-3-yl)aniline (3m)

65% yield (63.3 mg); yellow solid; m.p. 121 - 123 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.95 – 7.92 (m, 2H), 7.81 – 7.77 (m, 2H), 7.71 – 7.66 (m, 1H), 7.60 – 7.54 (m, 3H), 7.49 – 7.44 (m, 2H), 7.10 – 7.07 (m, 2H), 6.56 – 6.53 (m, 2H), 5.30 (d, *J* = 3.6 Hz, 1H), 4.76 (dd, *J* = 3.6, 8.4 Hz, 1H), 3.94 (d, *J* = 8.4 Hz, 1H), 2.91 (s, 6H), 2.52 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 150.8, 137.5, 136.4, 134.3, 134.2, 129.5, 129.3, 129.2, 129.1, 129.0, 128.9, 128.5, 120.7, 112.3, 91.7, 74.0, 73.9, 42.5, 40.3; HRMS (ESI) calcd for C₂₄H₂₇N₂O₅S₂⁺ [M + H]⁺ 487.1356, found 487.1353; IR (film) v_{max}: 3065, 2922, 1615, 1584, 1527, 1480, 1448, 1322, 1152, 1106, 1085, 1061, 999, 947, 843, 817, 795, 755, 722, 688, 640, 608, 588, 571, 544 cm⁻¹.

3-(2-Fluorophenyl)-2-methyl-4, 5-bis(phenylsulfonyl) isoxa-zolidine (3n)

51% yield (47.1 mg); white solid; m.p. 167 – 169 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.93 – 7.91 (m, 2H), 7.82 – 7.79 (m, 2H), 7.74 – 7.48 (m, 6H), 7.32 – 7.27 (m, 2H), 6.98 – 6.91 (m, 2H), 5.29 (d, J = 3.5 Hz, 1H), 4.74 (dd, J = 3.5, 8.3 Hz, 1H), 4.04 (d, J = 8.3 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 164.6, 161.3, 137.3, 136.1, 134.7, 134.4, 130.4, 130.3, 130.1, 130.0, 129.5, 129.2, 128.5, 116.0, 115.7, 91.6, 74.4, 73.2, 42.6; HRMS (ESI) calcd for C₂₂H₂₁O₅NS₂F⁺ [M + H]⁺ 462.0840, found 462.0835; IR (film) v_{max}: 3066, 2963, 2926, 1734, 1607, 1585, 1512, 1479, 1448, 1311, 1266, 1228, 1152, 1108, 1085, 1062, 1024, 1000, 954, 872, 852, 829, 803, 783, 753, 730, 687, 636, 609, 588, 570, 558, 535 cm⁻¹.

3-(2-Chlorophenyl)-2-methyl-4,5-bis(phenylsulfonyl)isoxa-zolidine (30)

91% yield (87.0 mg); white solid; m.p. 139 – 141 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.98 – 7.95 (m, 2H), 7.86 – 7.82 (m, 2H), 7.73 – 7.65 (m, 2H), 7.62 – 7.53 (m, 3H), 7.45 – 7.40 (m, 2H), 7.27 – 7.15 (m, 3H), 5.38 (d, *J* = 3.7 Hz, 1H), 4.91 (dd, *J* = 3.7, 8.7 Hz, 1H), 4.80 (d, *J* = 8.7 Hz, 1H), 2.58 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.0, 136.1, 134.8, 134.5, 131.1, 130.1, 129.7, 129.6, 129.5, 129.3, 129.2, 128.4, 127.6, 91.3, 74.3, 69.0, 42.5; HRMS (ESI) calcd for C₂₂H₂₁O₅NS₂Cl⁺ [M + H]⁺ 478.0544, found 478.0547; IR (film) v_{max}: 3065, 2965, 2924, 2854, 1585, 1570, 1477, 1448, 1435, 1403, 1325, 1280, 1180, 1153, 1107, 1085, 1062, 1024, 999, 948, 911, 864, 842, 788, 754, 687, 649, 626, 607, 590, 574, 559, 544 cm⁻¹.

3-(3-Chlorophenyl)-2-methyl-4,5-bis(phenylsulfonyl)iso-xazolidine (3p)

62% yield (59.3 mg); white solid; m.p. 140 – 142 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.95 – 7.92 (m, 2H), 7.83 – 7.81 (m, 2H), 7.76 – 7.49 (m, 6H), 7.30 – 7.17 (m, 3H), 7.07 (s, 1H), 5.31 (d, *J* = 3.3 Hz, 1H), 4.76 – 4.71 (m, 1H), 3.97 (d, *J* = 8.3 Hz, 1H), 2.56 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.1, 136.3, 136.0, 134.8, 134.6, 134.5, 130.2, 129.6, 129.5, 129.3, 129.2, 128.6, 128.5, 126.7, 91.6, 74.5, 73.4, 42.7; HRMS (ESI) calcd for C₂₂H₂₁O₅NS₂Cl⁺ [M + H]⁺ 478.0544, found 478.0543; IR (film) v_{max}: 3065, 2965, 2922, 2853, 1733, 1599, 1585, 1493, 1448, 1415, 1324, 1179, 1152, 1086, 1062, 1016, 999, 954, 850, 821, 802, 754, 728, 715, 687, 633, 607, 587, 573, 559, 531 cm⁻¹.

3-(4-Chlorophenyl)-2-methyl-4,5-bis(phenylsulfonyl)iso-xazolidine (3q)

61% yield (58.3 mg); white solid; m.p. 162 – 164 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.92 – 7.89 (m, 2H), 7.83 – 7.80 (m, 2H), 7.71 – 7.50 (m, 6H), 7.28 – 7.21 (m, 4H), 5.27 (d, *J* = 3.5 Hz, 1H), 4.73 (dd, *J* = 3.5, 8.3 Hz, 1H), 4.04 (d, *J* = 8.3 Hz, 1H), 2.56 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.2, 136.1, 135.0, 134.7, 134.5, 132.9, 129.92, 129.55, 129.50, 129.2, 129.1, 128.6, 91.7, 74.5, 73.2, 42.7; HRMS (ESI) calcd for C₂₂H₂₁O₅NS₂Cl⁺ [M + H]⁺ 478.0544, found 478.0541; IR (film) v_{max}: 3065, 2965, 2924, 2878, 1907, 1729, 1599, 1585, 1493, 1448, 1415, 1324, 1179, 1152, 1086, 1062, 1016, 999, 954, 850, 822, 803, 729, 687, 633, 607, 588, 573, 559, 532 cm⁻¹.

3-(2-Bromophenyl)-2-methyl-4,5-bis(phenylsulfonyl)isoxa-zolidine (3r)

83% yield (86.7 mg); white solid; m.p. $162 - 164 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃): $\delta7.97 - 7.94$ (m, 2H), 7.87 - 7.84 (m, 2H), 7.75 - 7.64 (m, 2H), 7.61 - 7.53 (m, 3H), 7.45 - 7.40 (m, 3H), 7.28 - 7.23 (m, 1H), 7.11 - 7.05 (m, 1H), 5.36 (d, J = 3.6 Hz, 1H), 4.90 (dd, J = 3.6, 8.6 Hz, 1H), 4.82 (d, J = 8.6 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.1, 136.1, 134.43, 134.41, 133.0, 132.8, 130.3, 130.0, 129.5, 129.3, 129.1, 128.5, 128.3, 125.3, 91.3, 74.4, 71.4, 42.3; HRMS (ESI) calcd for C₂₂H₂₁O₅NS₂Br⁺ [M + H]⁺ 522.0039, found 522.0042; IR (film) v_{max}: 3065, 2965, 2924, 2854, 2256, 1905, 1815, 1585, 1570, 1477, 1448, 1435, 1403, 1325, 1280, 1180, 1153, 1107, 1085, 1062, 1024, 999, 948, 911, 864, 842, 788, 754, 687, 649, 626, 607, 590, 574, 559, 544 cm⁻¹.

3-(3-Bromophenyl)-2-methyl-4,5-bis(phenylsulfonyl)isoxa-zolidine (3s)

41% yield (42.8 mg); white solid; m.p. 141 – 143 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.96 – 7.92 (m, 2H), 7.84 – 7.80 (m, 2H), 7.75 – 7.49 (m, 6H), 7.40 – 7.33 (m, 2H), 7.19 – 7.11 (m, 2H), 5.31 (d, J = 3.5 Hz, 1H), 4.72 (dd, J = 3.5, 8.3 Hz, 1H), 3.94 (d, J = 8.3 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.0, 136.5, 136.0, 134.8, 134.5, 132.2, 131.3, 130.4, 129.5, 129.5, 129.2, 128.5, 127.1, 122.5, 91.5, 74.5, 73.4, 58.4, 42.7; HRMS (ESI) calcd for C₂₂H₂₁O₅NS₂Br⁺ [M + H]⁺ 522.0039, found 522.0042; IR (film) v_{max}: 3064, 2963, 2925, 1724, 1584, 1477, 1448, 1432, 1323, 1180, 1152, 1107, 1085, 1062, 1024, 999, 953, 881, 791, 753, 727, 687, 607, 593, 577, 552, 524 cm⁻¹.

3-(4-Bromophenyl)-2-methyl-4,5-bis(phenylsulfonyl)isoxa-zolidine (3t)

62% yield (64.8 mg); white solid; m.p. 174 – 176 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.92 – 7.89 (m, 2H), 7.83 – 7.80 (m, 2H), 7.74 – 7.64 (m, 2H), 7.61 – 7.50 (m, 4H), 7.41 – 7.37 (m, 2H), 7.21 – 7.18 (m, 2H), 5.26 (d, J = 3.5 Hz, 1H), 4.72 (dd, J = 3.5, 8.3 Hz, 1H), 4.03 (d, J = 8.3 Hz, 1H), 2.56 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.2, 136.0, 134.7, 134.5, 133.4, 132.0, 130.2, 129.6, 129.5, 129.2, 128.6, 123.2, 91.7, 74.4, 73.2, 42.7; HRMS (ESI) calcd for C₂₂H₂₁O₅NS₂Br⁺ [M + H]⁺ 522.0039, found 522.0034; IR (film) v_{max}: 3065, 2966, 2877, 1585, 1489, 1448, 1411, 1324, 1179, 1153, 1108, 1085, 1070, 1012, 999, 954, 849, 819, 802, 754, 728, 687, 631, 607, 588, 572, 559, 523 cm⁻¹.

3-(Biphenyl-4-yl)-2-methyl-4,5-bis(phenylsulfonyl)isoxazo-lidine (3u)

75% yield (77.9 mg); white solid; m.p. 77 – 79 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.93 – 7.79 (m, 2H), 7.83 – 7.80 (m, 2H), 7.74 – 7.68 (m, 1H), 7.61 – 7.52 (m, 5H), 7.50 – 7.42 (m, 6H), 7.39 – 7.33 (m, 3H), 5.33 (d, *J* = 3.6 Hz, 1H), 4.84 (dd, *J* = 3.6, 8.4 Hz, 1H), 4.09 (d, *J* = 8.4 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 141.9, 140.3, 137.4, 136.3, 134.5, 134.4, 133.1, 129.8, 129.6, 129.4, 129.1, 128.9, 128.8, 128.6, 128.4, 127.6, 127.5, 127.0, 91.7, 74.4, 73.8, 42.7; HRMS (ESI) calcd for C₂₈H₂₆NO₅S₂⁺ [M + H]⁺ 520.1247, found 520.1249; IR (film) v_{max}: 3062, 2964, 2924, 2874, 1584, 1487, 1448, 1412, 1324, 1311, 1276, 1263, 1179, 1152, 1107, 1085, 1061, 1024, 1008, 999, 948, 854, 830, 800, 765, 752, 723, 687, 627, 606, 588, 559, 528 cm⁻¹.

2-Methyl-3-(naphthalen-2-yl)-4,5-bis(phenylsulfonyl)isoxa-zolidine (3v)

99% yield (97.7 mg); white solid; m.p. 143 – 145 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.97 (d, *J* = 7.5 Hz, 2H), 7.79 – 7.70 (m, 6H), 7.62 – 7.57 (m, 3H), 7.49 – 7.45 (m, 4H), 7.40 – 7.35 (m, 2H), 5.37 (d, *J* = 3.6 Hz, 1H), 4.90 (dd, *J* = 3.6, 8.3 Hz, 1H), 4.18 (d, *J* = 3.6 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.3, 136.3, 134.5, 134.4, 133.5, 132.9, 131.4, 129.6, 129.3, 129.2, 128.9, 128.6, 128.5, 127.9, 127.7, 126.6, 126.3, 124.9, 91.7, 74.4, 74.2, 42.8; HRMS (ESI) calcd for C₂₆H₂₄NO₅S₂⁺ [M + H]⁺ 494.1090, found 494.1091; IR (film) v_{max}: 3061, 3025, 2966, 2878, 1814, 1602, 1584, 1509, 1479, 1448, 1323, 1152, 1107, 1084, 1024, 999, 970, 898, 865, 822, 799, 752, 687, 651, 629, 607, 589, 572, 533, 480 cm⁻¹.

General Procedure for the Synthesis of 4

The product **3e** (47.1 mg, 0.1 mmol) and K₂CO₃ (13.8 mg, 0.1 mmol) was dissolved in 1 mL THF, the mixture was stirred at rt for 12 h. Once starting material was consumed (monitored by TLC), the mixture was concentrated to dryness. The residue was purified through flash column chromatography (EtOAc/PE) to afford the corresponding product **4** as a white semi-solid, 24.0 mg, 73% yield.

3-(2,4-dimethylphenyl)-2-methyl-5-(phenylsulfonyl)-2,3-dihydroisoxazole (4e)

¹H NMR (300 MHz, CDCl₃) δ 7.56 – 7.33 (m, 4H), 7.23 – 7.11 (m, 2H), 6.93 – 6.57 (m, 3H), 5.20 (d, J = 1.6 Hz, 1H), 2.97 (s, 3H), 2.23 (s, 3H), 2.19 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 152.2, 140.5, 137.7, 135.8, 132.1, 131.4, 131.0, 128.4, 128.2, 126.9, 126.7, 117.3, 71.7, 47.4, 20.6, 18.7; HRMS (ESI) calcd for C₁₈H₂₀NO₃S⁺[M+H]⁺330.1158, found 330.1154; IR (film) v_{max} 2922, 1688, 1610, 1447, 1317, 1148, 807, 757, 723, 688, 615, 557 cm⁻¹.

General Procedure for the Synthesis of 5

The product **3e** (47.1 mg, 0.1 mmol) and *m*CPBA (20.3 mg, 0.1 mmol) was dissolved in 2 mL DCM, the mixture was stirred at rt for 12 h. Once starting material was consumed (monitored by TLC), the mixture was concentrated to dryness. The residue was purified through flash column chromatography (EtOAc/PE) to afford the corresponding product **5** as a white semi-solid, 20.1 mg, yield 67%.

(E)-3-(2,4-dimethylphenyl)-2-(phenylsulfonyl)acrylaldehyde (5)

¹H NMR (300 MHz, CDCl₃) δ 9.64 (s, 1H), 8.98 (s, 1H), 8.21 – 7.88 (m, 2H), 7.74 – 7.45 (m, 3H), 7.21 – 6.98 (m, 3H), 2.45 (s, 3H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 184.8, 153.0, 143.1, 139.8, 139.4, 138.7, 133.4, 131.7, 131.5, 128.7, 128.6, 126.8, 126.7, 21.2, 19.8; HRMS (ESI) calcd for C₁₇H₁₆O₃SNa⁺[M+Na]⁺ 323.0712, found 323.0710; IR (film) v_{max} 2922, 1684, 1587, 1447, 1318, 1248, 1154, 1101, 825, 749, 717, 687, 649, 589, 536 cm⁻¹.

¹H and ¹³C NMR Spectra of All Cycloadducts

100 90 f1 (ppm)

100 90 f1 (ppm)

X-Ray Crystallographic Data

Crystallographic data for **3b** has been deposited with the Cambridge Crystallographic Data Centre as. These data can be obtained free of charge via www.ccdc.cam. ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Table 1.	Crystal	data and	structure	refinement	for .	3 b .
----------	---------	----------	-----------	------------	-------	--------------

Identification code	3b	
Empirical formula	C ₂₃ H ₂₃ NO ₅ S ₂	
Formula weight	458.55	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P ⁻¹	
Unit cell dimensions	a = 10.184(2) Å	alpha= 104.70(3)°.
	b = 10.710(2) Å	beta= $103.61(3)^{\circ}$.
	c = 11.083(2) Å	$gamma = 102.46(3)^{\circ}.$
Volume	$1086.6(4) \text{ Å}^3$	
Z	2	
Density (calculated)	1.401 Mg/m ³ _{\$35}	

Absorption coefficient	0.281 mm^{-1}
F(000)	482
Crystal size	0.504 x 0.428 x 0.31 mm ³
Theta range for data collection	3.189 to 27.497°.
Index ranges	-13<=h<=13, -13<=k<=13, -14<=l<=14
Reflections collected	14612
Independent reflections	4958 [R(int) = 0.0234]
Completeness to theta = 26.000°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.8925
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4958 / 0 / 282
Goodness-of-fit on F ²	1.101
Final R indices [I>2sigma(I)]	R1 = 0.0373, wR2 = 0.0912
R indices (all data)	R1 = 0.0397, wR2 = 0.0928
Extinction coefficient	n/a
Largest diff. peak and hole	0.348 and -0.794 e.Å ⁻³

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for **3b**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)	
S 1	3474(1)	3934(1)	7819(1)	19(1)	
S2	1962(1)	915(1)	9267(1)	20(1)	
01	2078(1)	3966(1)	7868(1)	29(1)	
02	4648(1)	5139(1)	8478(1)	29(1)	
03	3115(1)	1003(1)	10358(1)	28(1)	

04	878(1)	-349(1)	8584(1)	29(1)
05	5120(1)	2380(1)	8310(1)	22(1)
N1	4531(1)	1135(1)	7161(1)	20(1)
C1	4701(2)	3583(2)	5878(2)	30(1)
C2	4670(2)	3123(2)	4584(2)	42(1)
C3	3406(3)	2472(2)	3615(2)	44(1)
C4	2150(2)	2275(2)	3908(2)	43(1)
C5	2153(2)	2712(2)	5205(2)	30(1)
C6	3435(2)	3361(1)	6174(1)	21(1)
C7	3907(2)	2677(1)	8562(1)	19(1)
C8	2720(1)	1331(1)	8054(1)	17(1)
С9	3519(2)	305(1)	7610(1)	19(1)
C10	5729(2)	626(2)	7061(2)	31(1)
C11	1151(2)	2154(2)	9810(1)	21(1)
C12	-299(2)	1885(2)	9279(2)	25(1)
C13	-952(2)	2811(2)	9784(2)	31(1)
C14	-168(2)	3980(2)	10809(2)	33(1)
C15	1279(2)	4242(2)	11322(2)	32(1)
C16	1953(2)	3331(2)	10829(2)	26(1)
C17	2658(2)	-1003(1)	6536(2)	22(1)
C18	2070(2)	-979(2)	5279(2)	31(1)
C19	1314(2)	-2178(2)	4259(2)	42(1)
C20	1147(2)	-3388(2)	4506(2)	46(1)
C21	1723(2)	-3415(2)	5753(2)	41(1)
C22	2501(2)	-2233(2)	6798(2)	29(1)
C23	3139(2)	-2319(2)	8128(2)	40(1)

S1-O1	1.4421(12)
S1-O2	1.4397(13)
S1-C6	1.7580(15)
S1-C7	1.8255(15)
S2-O3	1.4410(13)
S2-O4	1.4368(13)
S2-C8	1.8019(15)
S2-C11	1.7629(16)
O5-N1	1.4811(16)
O5-C7	1.4117(17)
N1-C9	1.4740(18)
N1-C10	1.4557(19)
C1-C2	1.383(2)
C1-C6	1.390(2)
C2-C3	1.370(3)
C3-C4	1.378(3)
C4-C5	1.393(3)
C5-C6	1.382(2)
C7-C8	1.540(2)
C8-C9	1.5520(19)
C9-C17	1.510(2)
C11-C12	1.389(2)
C11-C16	1.389(2)
C12-C13	1.385(2)
C13-C14	1.384(3)
C14-C15	1.385(3)
C15-C16	1.384(2)
C17-C18	1.390(2)

Table 3. Bond lengths [Å] and angles $[\circ]$ for **3b**.

C17-C22	1.403(2)
C18-C19	1.395(2)
C19-C20	1.375(3)
C20-C21	1.379(3)
C21-C22	1.401(2)
C22-C23	1.500(3)
O1-S1-C6	109.24(8)
01-S1-C7	106.85(7)
O2-S1-O1	119.55(7)
O2-S1-C6	107.72(8)
O2-S1-C7	105.73(7)
C6-S1-C7	107.11(7)
O3-S2-C8	106.96(7)
O3-S2-C11	108.09(7)
O4-S2-O3	119.41(8)
O4-S2-C8	105.58(7)
O4-S2-C11	108.28(7)
C11-S2-C8	108.04(7)
C7-O5-N1	103.46(10)
C9-N1-O5	100.56(10)
C10-N1-O5	104.86(11)
C10-N1-C9	113.10(12)
C2-C1-C6	118.91(17)
C3-C2-C1	120.17(18)
C2-C3-C4	120.84(17)
C3-C4-C5	120.14(18)
C6-C5-C4	118.44(17)
C1-C6-S1	118.98(12)
C5-C6-S1	119.55(12)
C5-C6-C1	121.48(15)

O5-C7-S1	110.23(10)
O5-C7-C8	107.11(11)
C8-C7-S1	113.75(10)
C7-C8-S2	114.94(10)
C7-C8-C9	101.48(11)
C9-C8-S2	109.45(10)
N1-C9-C8	99.62(11)
N1-C9-C17	111.00(11)
C17-C9-C8	117.15(12)
C12-C11-S2	119.09(12)
C16-C11-S2	119.36(12)
C16-C11-C12	121.36(14)
C13-C12-C11	118.99(15)
C14-C13-C12	120.22(15)
C13-C14-C15	120.20(16)
C16-C15-C14	120.49(16)
C15-C16-C11	118.73(15)
C18-C17-C9	119.34(14)
C18-C17-C22	120.51(15)
C22-C17-C9	120.11(14)
C17-C18-C19	120.48(18)
C20-C19-C18	119.47(19)
C19-C20-C21	120.23(17)
C20-C21-C22	121.82(18)
C17-C22-C23	122.73(15)
C21-C22-C17	117.49(17)
C21-C22-C23	119.78(17)

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
S1	24(1)	15(1)	19(1)	3(1)	8(1)	6(1)
S2	23(1)	19(1)	18(1)	6(1)	8(1)	6(1)
01	32(1)	30(1)	34(1)	12(1)	18(1)	18(1)
O2	38(1)	16(1)	26(1)	3(1)	4(1)	0(1)
03	33(1)	35(1)	21(1)	12(1)	10(1)	17(1)
O4	31(1)	20(1)	33(1)	6(1)	14(1)	1(1)
05	18(1)	18(1)	25(1)	1(1)	4(1)	3(1)
N1	20(1)	17(1)	22(1)	3(1)	7(1)	4(1)
C1	29(1)	34(1)	31(1)	12(1)	14(1)	10(1)
C2	57(1)	51(1)	40(1)	23(1)	33(1)	29(1)
C3	79(2)	45(1)	24(1)	14(1)	23(1)	37(1)
C4	56(1)	42(1)	22(1)	4(1)	-4(1)	19(1)
C5	28(1)	32(1)	26(1)	6(1)	3(1)	10(1)
C6	25(1)	19(1)	20(1)	6(1)	8(1)	9(1)
C7	21(1)	17(1)	17(1)	4(1)	6(1)	5(1)
C8	19(1)	16(1)	15(1)	3(1)	6(1)	4(1)
С9	22(1)	16(1)	18(1)	4(1)	8(1)	5(1)
C10	24(1)	27(1)	43(1)	6(1)	16(1)	9(1)
C11	24(1)	22(1)	19(1)	7(1)	10(1)	7(1)
C12	24(1)	28(1)	23(1)	8(1)	8(1)	5(1)
C13	23(1)	39(1)	35(1)	14(1)	12(1)	13(1)
C14	37(1)	36(1)	35(1)	11(1)	19(1)	20(1)
C15	35(1)	29(1)	29(1)	1(1)	11(1)	10(1)
C16	24(1)	27(1)	23(1)	4(1)	8(1)	7(1)

Table 4. Anisotropic displacement parameters (Å² x 10³) for **3b**. The anisotropic displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]

C17	21(1)	19(1)	24(1)	0(1) 11(1)	3(1)
C18	29(1)	33(1)	24(1)	1(1) 11(1)	0(1)
C19	30(1)	52(1)	26(1)	-8(1) 12(1)	-5(1)
C20	30(1)	33(1)	52(1)	-18(1)20(1)	-7(1)
C21	31(1)	18(1)	68(1)	-1(1) 25(1)	2(1)
C22	23(1)	20(1)	46(1)	6(1) 18(1)	7(1)
C23	41(1)	28(1)	62(1)	25(1) 22(1)	15(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **3b**.

	х	у	Z	U(eq)	
H1	4072	130	01	6358	24
H1A	5554	40.	34	6538	36
H2	5508	32:	56	4371	51
Н3	3396	21:	59	2749	53
H4	1299	18:	50	3239	52
Н5	1312	25'	71	5414	36
H7	4108	30:	50	9512	22
H8	1978	13	16	7300	21
Н9	4032	110	0	8373	23
H10A	6426	12'	79	6910	47
H10B	5417	-20)4	6346	47
H10C	6135	468	8	7862	47
H12	-822	10	95	8595	30
H13	-1920) 264	47	9433	37
H14	-613	459	92	11155	40
H15	1801	503	36	12001	39
H16	2923	350	03	11173	31

H18	2180	-158	5117	38
H19	927	-2159	3418	51
H20	644	-4190	3831	55
H21	1591	-4242	5905	50
H23A	4151	-1998	8367	60
H23B	2859	-3241	8110	60
H23C	2817	-1774	8759	60

Table 6. Torsion angles [°] for **3b**.

S1-C7-C8-S2	-115.81(10)
S1-C7-C8-C9	126.21(10)
S2-C8-C9-N1	-155.34(9)
S2-C8-C9-C17	84.96(13)
S2-C11-C12-C13	174.65(12)
S2-C11-C16-C15	-174.49(13)
O1-S1-C6-C1	163.13(12)
O1-S1-C6-C5	-16.38(15)
01-S1-C7-O5	167.76(9)
O1-S1-C7-C8	47.45(12)
O2-S1-C6-C1	31.84(14)
O2-S1-C6-C5	-147.67(13)
O2-S1-C7-O5	-63.88(11)
O2-S1-C7-C8	175.81(10)
O3-S2-C8-C7	-52.77(12)
O3-S2-C8-C9	60.62(11)
O3-S2-C11-C12	-146.23(12)
O3-S2-C11-C16	28.79(14)
O4-S2-C8-C7	179.06(10)

O4-S2-C8-C9	-67.54(11)
O4-S2-C11-C12	-15.54(14)
O4-S2-C11-C16	159.48(12)
O5-N1-C9-C8	50.46(12)
O5-N1-C9-C17	174.57(11)
O5-C7-C8-S2	122.14(11)
O5-C7-C8-C9	4.15(13)
N1-O5-C7-S1	-97.22(10)
N1-O5-C7-C8	27.01(13)
N1-C9-C17-C18	-46.24(18)
N1-C9-C17-C22	131.46(14)
C1-C2-C3-C4	0.6(3)
C2-C1-C6-S1	179.50(13)
C2-C1-C6-C5	-1.0(2)
C2-C3-C4-C5	-1.5(3)
C3-C4-C5-C6	1.1(3)
C4-C5-C6-S1	179.62(13)
C4-C5-C6-C1	0.1(2)
C6-S1-C7-O5	50.80(11)
C6-S1-C7-C8	-69.51(12)
C6-C1-C2-C3	0.7(3)
C7-S1-C6-C1	-81.49(14)
C7-S1-C6-C5	99.00(14)
C7-O5-N1-C9	-49.59(12)
C7-O5-N1-C10	-167.13(12)
C7-C8-C9-N1	-33.47(12)
C7-C8-C9-C17	-153.16(12)
C8-S2-C11-C12	98.35(13)
C8-S2-C11-C16	-86.63(13)
C8-C9-C17-C18	67.21(18)

C8-C9-C17-C22	-115.09(15)
C9-C17-C18-C19	177.62(14)
C9-C17-C22-C21	-178.31(14)
C9-C17-C22-C23	1.0(2)
C10-N1-C9-C8	161.75(12)
C10-N1-C9-C17	-74.13(16)
C11-S2-C8-C7	63.38(12)
C11-S2-C8-C9	176.77(9)
C11-C12-C13-C14	-0.5(2)
C12-C11-C16-C15	0.4(2)
C12-C13-C14-C15	1.1(3)
C13-C14-C15-C16	-0.9(3)
C14-C15-C16-C11	0.2(3)
C16-C11-C12-C13	-0.3(2)
C17-C18-C19-C20	0.4(3)
C18-C17-C22-C21	-0.6(2)
C18-C17-C22-C23	178.68(15)
C18-C19-C20-C21	-0.1(3)
C19-C20-C21-C22	-0.7(3)
C20-C21-C22-C17	1.0(2)
C20-C21-C22-C23	-178.34(16)
C22-C17-C18-C19	-0.1(2)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for $\mathbf{3b}$ [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)