S1

Supporting information for

Unveil mechanism of electron transfer facilitated regeneration of active Fe²⁺ by nano-dispersed iron/graphene catalyst for phenol removal

Penglei Wang^{a,b}, Xin Zhou^{a,b}, Yagang Zhang^{*a,b,c}, Liping Yang^{a,b}, Keke Zhi^{a,b}, Lulu Wang^{a,b}, Letao Zhang^a and Xinfeng Guo^a

^a Center for Green Chemistry and Organic Functional Materials Laboratory, Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Urumqi 830011, China

^b University of the Chinese Academy of Sciences, Beijing 100049, China

^c Department of Chemical & Environmental Engineering, Xinjiang Institute of Engineering,

Urumqi 830023, China

*Corresponding author: Prof. Yagang Zhang

Tel: +86-18129307169; Fax: +86-991-3838957; E-mail: ygzhang@ms.xjb.ac.cn

Table of content

The synthesis of GO	S2
Methods and sample analysis	S2
Electron paramagnetic resonance (EPR) studies	S3
Zeta potential of Fe ₃ O ₄ -RGO	S3
EDX spectrum of catalyst	S4
TEM images of catalyst	S4
Comparison of catalytic activity for different Fenton catalysts	S5
Reference	S5

The synthesis of GO.

GO were synthesized from graphite powder according to reported procedure.^{1, 2} Typically, the mixture of concentrated H₂SO₄/H₃PO₄ (H₂SO₄/H₃PO₄ = 360:40 by volume) was added to 1000 mL round bottom flask. Then, the mixture of graphite powder (3.0 g, 1 wt equiv) and KMnO₄ (18.0 g, 6 wt equiv) were added slowly to the flask while the temperature was kept below 10 °C. The mixture was stirred for 12 h at 50 °C , cooled down to room temperature and poured onto ice cold water (400 mL), then H₂O₂ (30%) aqueous solution was added to the resultant suspension until the color of the suspension changed to bright yellow. The suspension was repeatedly centrifuged and washed first with HCl (30%) solution then with deionized water until the *pH* value of the supernatant was neutral. The collected precipitates were vacuum-dried overnight at room temperature. The resultant products were graphite oxide flake. Finally, GO were obtained via ultrasonic treatment of the graphite oxide flakes.

Methods and sample analysis.

The concentrations of phenol were analyzed via high performance liquid chromatography (Ultimate 3000, Dionex) equipped with UV absorbance detector and C18 column (4.6 mm \times 250 mm). The mobile phase was methanol and water (50:50, v/v) at a flow rate of 0.50 mL min⁻¹ with column temperature of 30 °C, and the analytical wavelength was 270 nm.

 H_2O_2 concentration was analyzed by iodometric method.³ 2.0 mL sample solution was diluted with deionized water to 20 mL. In the following step, 1.0 mL 20% H_2SO_4 , 200 µL 10% KI and one drop ammonium molybdate solution were added. The mixture was then titrated with 0.01 mol L⁻¹ sodium thiosulfate until end point indicated by a faint yellow color. After that, 2.0 mL starch indicator was added and titration was continued until disappearing of blue color.

Chemical Oxygen Demand (COD) was determined by a known procedure.³ In general, Na_2CO_3 powder was added to 3.0 mL sample until the concentration of

 Na_2CO_3 reached 20 g L⁻¹. Then the sample was covered to minimize evaporation losses and heated in a water bath at 90 °C for 90 min. Finally COD was measured using a COD measurement kit (Hach, United States) by the K₂Cr₂O₇-oxidation method with 0-150 ppm COD digestion solution, a Hach DRB 200 digestion chamber and a Hach DR1010 COD calorimeter. The concentration of total dissolved iron was measured with 1,10-phenanthroline after adding hydroxylamine hydrochloride at 510 nm on a UV/Vis spectrophotometer.^{4, 5}

Electron paramagnetic resonance (EPR) studies.

5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was used as spin-trapping agent. 25 mg of catalyst was added to 25 mL of 50 mg L⁻¹ phenol solution with pH adjusted to 3 by addition of H_2SO_4 in a conical flask. 13 µL of H_2O_2 (35%) was added to the solution to initiate the reaction. After 5 min, 1 mL suspension was drawn, immediately mixed with 200 µL 0.2 mol L⁻¹ DMPO to form DMPO–radical adduct. The EPR spectra were obtained on a Bruker E500 spectrometer with a microwave bridge at room temperature.

Zeta potential of Fe₃O₄-RGO

Fig S1 Zeta potential of Fe₃O₄-RGO

The EDX spectrum of catalyst

Fig S2 the EDX analysis showing the presence of C, Fe, and O for a) Fe_3O_4 -RGO and b) Fe^0/Fe_3O_4 -RGO

The TEM images of catalyst

Fig S3 Different resolution TEM images of Fe⁰/Fe₃O₄-RGO

Comparison of catalytic activity for different Fenton catalysts

Catalyst	Catalyst dose	[phenol] ₀	[H ₂ O ₂] ₀	рН	T (°C)	Degradation	Reaction	Ref.
	(g L ⁻¹)	mīvi	mīvi			(%))	
Fe ₃ O ₄	5	1	1200	N/A ^a	RTª	95	6	6
Au/HO-npD	NAª	1.06	5.88	4	RTa	93	24	7
Fe/AC	0.5	1.06	15	3	50	100	4	8
Fe-ZSM-5.	1.5	0.691	90	3.5	70	81	3	9
FeAlSi-ox]	3	0.500	50	6.9	RTª	32	8	4
FeSi-ox	3	0.500	50	6.9	RTª	44	8	4
Magnetite (Fe ₃ O ₄)	3	0.266	150	7	RTa	42	24	10
Fe-Al-pillared clay	0.6	0.213	4	4	28	100	2.5	11
Fe ⁰ /Fe ₃ O ₄ -RGO	1	0.531	5	3	25	100	0.5	This
								work

Table S1 Comparison of different Fenton-like catalysts for phenol removing.

^a Data not available. ^b Room temperature

References

- 1. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, *ACS nano*, 2010, 4, 4806-4814.
- 2. P. Wang, X. Zhou, Y. Zhang, L. Wang, K. Zhi and Y. Jiang, *Rsc Adv*, 2016, 6, 102348-102358.
- 3. T. Wu and J. D. Englehardt, *Environmental science & technology*, 2012, 46, 2291-2298.
- 4. A. L. T. Pham, C. Lee, F. M. Doyle and D. L. Sedlak, *Environmental science & technology*, 2009, 43, 8930-8935.
- 5. H. Tamura, K. Goto, T. Yotsuyanagi and M. Nagayama, *Talanta*, 1974, 21, 314-318.
- 6. S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai and G. Jiang, *Journal of Hazardous Materials*, 2009, 167, 560-566.
- 7. S. Navalon, R. Martin, M. Alvaro and H. Garcia, *Angew Chem Int Edit*, 2010, 49, 8403-8407.
- 8. J. A. Zazo, J. A. Casas, A. F. Mohedano and J. J. Rodríguez, *Applied Catalysis B: Environmental*, 2006, 65, 261-268.
- 9. K. Fajerwerg and H. Debellefontaine, *Applied Catalysis B-Environmental*, 1996, 10, L229-L235.

- 10. K. Rusevova, F.-D. Kopinke and A. Georgi, *Journal of Hazardous Materials*, 2012, 241–242, 433-440.
- 11. M. Luo, D. Bowden and P. Brimblecombe, *Applied Catalysis B: Environmental*, 2009, 85, 201-206.