Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplementary material

Identification of potential tubulin polymerization inhibitors by 3D-QSAR, molecular docking and molecular dynamics

Tian Chi Wang[†], Li Ping Cheng[†]*, Xin Ying Huang, Lei Zhao, Wan Pang^{*}

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China

E-mail: chengliping@sit.edu.cn; pangwan@sit.edu.cn

Table 1S Structures and inhibition activities of the CA-4 analogues in the training set and test set (* represents compounds in test set)

20	3,4,5-OCH ₃	СН	CF	3-OH,4-OCH ₃	8.80	4.9 ^g	1.80
21	3,4,5-OCH ₃	CF	CF	3- NO ₂ ,4-OCH ₃	8.20	4.9 ^g	1.67
22	3,4,5-OCH ₃	CF	СН	3- NO ₂ ,4-OCH ₃	2.30	4.9 ^g	0.47
23	3,4,5-OCH ₃	СН	CF	3- NO ₂ ,4-OCH ₃	10.90	4.9 ^g	2.22
24	3,4,5-OCH ₃	CF	СН	3-NH ₂ ,4-OCH ₃	5.50	4.9 ^g	1.12
25	3,4,5-OCH ₃	СН	CF	3-NH ₂ ,4-OCH ₃	13.70	4.9 ^g	2.80
26	3,4,5-OCH ₃	СН	СН	3-N ₃ ,4-OCH ₃	1.40	1.2 ^h	1.17
27	3,4,5-OCH ₃	СН	СН	2-NH ₂ ,4-OCH ₃	1.40	1.2e	1.17
28*	3,4,5-OCH ₃	СН	СН	2,3-OH,4-OCH ₃	1.90	1.2 ^e	1.58
29	3,4,5-OCH ₃	ССНО	СН	4-OCH ₃	4.00	4.0 ^h	1.00
30	3,4,5-OCH ₃	CCN	СН	4-OCH ₃	6.00	4.0 ⁱ	1.50
31	3,4,5-OCH ₃	CCN	СН	3- NO ₂ ,4-OCH ₃	5.00	4.0 ⁱ	1.25
32	3,4,5-OCH ₃	CCN	СН	3-OH,4-OCH ₃	5.00	4.0 ⁱ	1.25
33*	-	CHCN	СН	3- NH ₂ ,4-OCH ₃	8.00	4.0 ⁱ	2.00
34	3,4,5-OCH ₃	CCN	СН	3- NH ₂ ,4-CH ₃	10.00	4.0 ⁱ	2.50
35	3,4,5-OCH ₃	CCN	СН	3- NH ₂ ,4-Cl	6.00	4.0 ⁱ	1.50
36	3,4,5-OCH ₃	CCN	СН	3-NHAc,4-OCH ₃	10.00	4.0 ⁱ	2.50
*37	4-OCH ₃	CHCN	СН	3- NH ₂ ,4-OCH ₃	9.00	4.0 ⁱ	2.25
38	3,4,5-OCH ₃	CCON H ₂	СН	3- NH ₂ ,4-OCH ₃	3.00	4.0 ⁱ	0.75
39	3,4,5-OCH ₃	СН	СН	3- NH ₂ ,4- OCH ₃	4.00	4.0 ⁱ	1.00
40	3,4,5-OCH ₃	СН	СН	3- NH ₂ ,4- CH ₃	4.00	4.0 ⁱ	1.00
41*	3,4,5-OCH ₃	СН	СН	3- NH ₂ ,4- Cl	3.00	4.0 ⁱ	0.75
42	3,4,5-OCH ₃	CHCN	CH ₂	3- NH ₂ ,4-OCH ₃	7.00	4.0 ⁱ	1.75
43	3,4,5-OCH ₃	CCN	СН	3- NH ₂ ,4-OCH ₃	10.00	4.0 ⁱ	2.50
44	3,4,5-OCH ₃	СН	CCN	3- NH ₂ ,4-OCH ₃	5.00	4.0 ⁱ	1.25
45*	3,4-OCH ₃	CHCN	СН	3- NH ₂ ,4-OCH ₃	7.00	4.0 ⁱ	1.75
46	3,4,5-OCH ₃	СН	СН	2-Cl,4-OCH ₃	3.50	1.9 ^j	1.84
47	3,4,5-OCH ₃	СН	СН	4-Br	3.10	1.9 ^j	1.63
48	3,4,5-OCH ₃	СН	СН	4-NMe ₂	3.40	1.9 ^j	1.79
49	3,4,5-OCH ₃	CH ₂	CH ₂	4-OCH ₃	7.90	1.9 ^j	4.16
50	3,4,5-OCH ₃	CH ₂	NH	4- OCH ₃	23.00	1.9 ^j	12.11
51*	3,5-OCH ₃	CH ₂	NH	4- OCH ₃	29.00	1.9 ^j	15.26
52	3,4,5-OCH ₃	CH ₂	NH	3-OH,4- OCH ₃	100.00	3.9 ^k	25.64
53	3,4,5-OCH ₃	CH ₂	NCH ₃	3-OH,4- OCH ₃	45.00	3.9 ^k	11.54
54	3,4,5-OCH ₃	CH ₂	NEt	3-OH,4- OCH ₃	15.00	3.9 ^k	3.85
55*	3,4,5-OCH ₃	CH ₂	NAm	3-OH,4- OCH ₃	20.00	3.9 ^k	5.13
56	3,4,5-OCH ₃	CH ₂	NHex	3-OH,4- OCH ₃	20.00	3.9 ^k	5.13
57	3,4,5-OCH ₃	CH ₂	NBu-acid	3-OH,4- OCH ₃	40.00	3.9 ^k	10.26
58	3,4,5-OCH ₃	CH ₂	Npentanol	3-OH,4- OCH ₃	20.00	3.9 ^k	5.13
59	3,4,5-OCH ₃	NH	CH ₂	3-OH,4- OCH ₃	100.00	3.9 ^k	25.64
60	3,4,5-OCH ₃	NCH ₃	CH ₂	3-OH,4- OCH ₃	100.00	3.9 ^k	25.64

 a Ref. 38; b Ref. 39; c Ref. 40; d Ref. 41; e Ref. 42; f Ref. 12; g Ref.14; h Ref.13; i Ref.43; j Ref. 44; k Ref.45; IC₅₀c 1 denotes the corrected IC₅₀.

N		Predicted	Residue	Predicted	Residue
INO.	p(IC ₅₀) _c	CoMFA	CoMFA	CoMSIA	CoMSIA
1(CA-4)	0.000	-0.189	-0.189	-0.181	-0.181
2	-0.033	-0.086	-0.053	-0.086	-0.053
3	-0.243	-0.295	-0.053	-0.221	0.022
4*	-0.427	-0.143	0.284	-0.087	0.340
5	-0.336	-0.286	0.050	-0.322	0.014
6	-0.734	-0.734	0.000	-0.711	0.023
7	-0.367	-0.362	0.005	-0.348	0.019
8	-0.801	-0.778	0.023	-0.782	0.019
9*	-0.170	-0.335	-0.165	-0.354	-0.184
10	-0.199	-0.248	-0.049	-0.178	0.021
11	-0.790	-0.803	-0.013	-0.795	-0.006
12	-1.412	-1.444	-0.032	-1.426	-0.014
13	-0.367	-0.339	0.028	-0.396	-0.029
14	-0.336	-0.341	-0.005	-0.278	0.059
15	-0.097	-0.134	-0.037	-0.098	-0.001
16	-0.223	-0.221	0.002	-0.176	0.047
17	-0.318	-0.317	0.001	-0.380	-0.062
18*	-0.574	-0.433	0.141	-0.502	0.072
19	-0.173	-0.182	-0.009	-0.260	-0.087
20	-0.255	-0.246	0.009	-0.234	0.021
21	-0.223	-0.181	0.042	-0.207	0.016
22	0.328	0.331	0.003	0.308	-0.020
23	-0.346	-0.305	0.041	-0.323	0.023
24	-0.049	-0.181	-0.132	-0.131	-0.082
25	-0.447	-0.377	0.070	-0.300	0.147
26	-0.068	-0.006	0.062	-0.099	-0.031
27	-0.068	-0.107	-0.039	-0.054	0.014
28*	-0.199	-0.075	0.124	-0.201	-0.002
29	0.000	0.036	0.036	0.005	0.005
30	-0.176	-0.275	-0.099	-0.217	-0.041
31	-0.097	-0.145	-0.048	-0.031	0.066
32	-0.097	-0.238	-0.141	-0.206	-0.109
33*	-0.301	-0.385	-0.084	-0.554	-0.253
34	-0.398	-0.289	0.109	-0.307	0.091
35	-0.176	-0.274	-0.098	-0.323	-0.148
36	-0.398	-0.300	0.099	-0.401	-0.003

Table 2S The experimental and predicted $pIC_{50}c$ values of all studied CA-4 analogues (* represents compounds in test set)

37*	-0.352	-0.427	-0.075	-0.398	-0.046
38	0.125	0.136	0.011	0.118	-0.007
39	0.000	0.000	0.000	-0.044	-0.044
40	0.000	-0.064	-0.064	-0.026	-0.026
41*	0.125	-0.159	-0.284	-0.124	-0.249
42	-0.243	-0.195	0.048	-0.264	-0.021
43	-0.398	-0.222	0.176	-0.285	0.113
44	-0.097	-0.160	-0.063	-0.131	-0.034
45*	-0.243	-0.348	-0.105	-0.376	-0.133
46	-0.265	-0.166	0.099	-0.180	0.085
47	-0.212	-0.145	0.067	-0.139	0.073
48	-0.253	-0.152	0.101	-0.095	0.158
49	-0.619	-0.598	0.021	-0.607	0.012
50	-1.083	-1.149	-0.066	-1.105	-0.022
51*	-1.184	-0.983	0.201	-0.943	0.241
52	-1.409	-1.346	0.063	-1.293	0.116
53	-1.062	-1.113	-0.051	-1.105	-0.043
54	-0.585	-0.556	0.029	-0.616	-0.0313
55*	-0.710	-0.685	0.025	-0.705	0.005
56	-0.710	-0.686	0.024	-0.705	0.005
57	-1.011	-0.980	0.031	-1.052	-0.041
58	-0.710	-0.733	-0.023	-0.717	-0.007
59	-1.409	-1.407	0.002	-1.447	-0.038
60	-1.409	-1.399	0.010	-1.400	0.009

Fig. 1S Alignment of the training set and CA-4 used as a template for alignment, with the common substructure (atoms numbered from 3 to 6) shown in bold.

Fig. 2S Average root-mean-square displacement (RMSD) of the backbone (C, C_{α} , N, O) atoms of the ligands-3UT5 complexes (1, 22, 22a- 22c) versus time.

Fig. 3S Average root-mean-square fluctuation (RMSF) of the backbone (C, C_{α} , N, O) atoms of the ligands-3UT5 complexes (**1**, **22**, **22a- 22c**) versus residue numbers. The residues **a**, **b**, **c**, **d**, **e**. **f**, **g**, **h** and **i** are Gln11, Ala12, Asn101, Gly144, Thr145, Val177, Tyr224, Gys241 and Lys254, respectively.

Fig. 4S ADMET_AlogP98 versus ADMET_PSA_2D.