

Fig.S1: CV profiles of the Sn–CeO₂NPs/GCPE in 5 mM $[Fe(CN)_6]^{-3/-4}$ with different scan rates (0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45 and 0.50 Vs⁻¹). The inset shows the plot of dependence of I_P on $v^{\frac{1}{2}}$ at Sn–CeO₂NPs/GCPE

Fig.S2: Plot of Log I_P versus Log v

Fig. S3: Plot of E_P versus Lnv

Fig. S4: The effect of glassy carbon paste composition with different percentage of the modifier on SW voltammograms of 1.14 μ M DTIC; (1) 0.0%, (2) 5%, (3) 10%, (4) 15% and (5) 20% Sn–CeO₂NPs. Other conditions are the same in Fig.4B.

Fig.S5: Effect of pH on $E_P(\bullet)$ and $I_P(\blacktriangle)$

Fig.S6: SW voltammograms for determination of DTIC spiked in human serum samples in PBS of pH4.0 at Sn–CeO₂NPs/GCPE. [DTIC] (1)

blank: 2) 0.076, 3) 0.31, 4) 0.59, 5) 0.79, 6) 1.08, 7) 1.57, 8) 1.99, 9) 2.53, 10) 3.15, 11) 3.73, 12) 4.39, 13) 5.41and 14) 6.59 μM.

Fig.S7: SW voltammograms for determination of DTIC spiked in human urine samples in PBS of pH4.0 at Sn–CeO₂NPs/GCPE. [DTIC] (1) blank: 2) 0.069, 3) 0.32, 4) 0.59, 5) 0.79, 6) 1.02, 7) 1.25, 8) 1.57, 9) 1.96, 10) 2.50, 11) 2.98, 12) 3.52, 13) 4.27 and 14) 5.31 μ M.

Fig.S8: (A) SW voltammograms for determination of DTIC in vial samples at Sn–CeO₂NPs/GCPE. (1) blank, 2) vial sample: 3) (2) + 0.4, 4) (2) + 0.69, 5) (2) + 1.04, 6) (2) + 1.45, 7) (2) + 2.02, 8) (2) + 2.73, 9) (2) + 3.52, 10) (2) + 4.03, 11) (2) + 4.91, 12) (2) + 5.44 μ M DTIC.

Table S1:

Interferent	Concentration (µM)	Recovery %
Ascorbic acid	250	98.39
Uric Acid	200	98.86
Dopamine	150	97.88
Alanine	300	102.12
Phenylalanine	300	101.43
Uracil	200	98.55
Cysteine	250	98.37
Glucose	500	98.87
Citric acid	300	99.38
Cytosine	100	99.49
Cholesterol	100	99.54
Histidine	200	98.48
Serine	300	99.11
Mannitol	350	98.89
Thiourea	200	102.17

Influence of interferents on the voltammetric responses of 1.18 μ M DTIC at Sn–CeO₂NPs/GCPE

Added (µM)	Found (µM)	Precision RSD %	Recovery %
Serum			
0.31	0.30 ± 0.0064	2.13	96.77
2.53	2.50 ± 0.047	1.89	98.81
6.59	6.55 ± 0.110	1.67	99.39
Urine			
0.32	0.33 ± 0.007	2.28	103.12
1.96	1.93 ± 0.030	1.56	98.47
5.31	5.36 ± 0.098	1.84	100.94

Table S2: Recovery of DTIC in serum and urine samples (n=5)

Added (µM)	Found (µM)	Recovery %	Precision RSD %
0.0	1.32 ± 0.015	_	1.14
0.50	1.81 ± 0.017	98.00	0.94
2.50	3.79 ± 0.028	98.80	0.74
5.50	6.84 ± 0.047	100.40	0.67

Table S3: Determination result of DTIC in DTIC vial sample by standard addition

 method (n=5)