In vivo biodistribution and passive accumulation of upconversion

nanoparticles in colorectal cancer models via intraperitoneal

injection

Yilin Gao,^a Xingjun Zhu,^a Yuwen Zhang,^a Xiaofeng Chen,^b Li Wang,^b Wei Feng,^a Chunhui Huang,^a Fuyou Li*^a

^aDepartment of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, P. R. China

^bCenter of Analysis and Measurement, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China

*Corresponding author. Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.

Fax: +86 21 55664185

E-mail address: fyli@fudan.edu.cn

Figure S1 X-ray diffraction patterns of as-prepared NaLuF₄:Yb,Tm, cit-NaLuF₄:Yb,Tm@NaLuF₄ samples, and standard data of hexagonal-phase β -NaLuF₄ (JCPDS No.27-0726).

Figure S2 Fourier-transform infrared spectra of citrates, OA-NaLuF₄:Yb,Tm@NaLuF₄ and cit-

NaLuF₄:Yb,Tm@NaLuF₄.

Figure S3 *Ex vivo* images of the normal male mice injected with cit-NaLuF₄:Yb,Tm@NaLuF₄ via intraperitoneal (a1 - a8) or intravenous (b1 - b8) injection within 240 h. Upconversion luminescence signals were collected at 800 ± 12 nm under excitation with CW 980 nm laser.

Figure S4 Mass accumulation (% ID) of Lu³⁺ in the main tissues at various time points (1 h, 6 h, 12 h, 24 h, 48 h, 72 h, 120 h and 240 h) after intraperitoneal (IP, a) or intravenous (IV, b) injection of cit-NaLuF₄:Yb,Tm@NaLuF₄ (16 mg/kg wt) into the normal male mice (n=3). % ID of Lu³⁺ was calculated by comparing the total amount of Lu³⁺ in each tissue with standard of injected dose (ID).

Figure S5 Accumulation eliminant curve of cit-NaLuF₄:Yb,Tm@NaLuF₄ via intraperitoneal (a) or intravenous (b) injection in the normal male mice within 240 h (16 mg/kg wt).

Figure S6 Accumulation pattern of cit-NaLuF₄:Yb,Tm@NaLuF₄ in the pancreas (a1, b1), the liver (a2, b2), the spleen (a3, b3), the mesentery (a4, b4), the lung (a5, b5), the intestine (a6, b6) and the kidney (a7, b7) at 6 h after intraperitoneal (a) or intravenous (b) injection in the normal male mice. Upon excitation at 980 nm, luminescence signals were collected in the channel of 400 - 500 nm.

Figure S7 Unit mass accumulations (%ID/g) of Lu^{3+} in the main normal organs and the tumours via intraperitoneal (a) or intravenous (b) injection of cit-NaLuF₄:Yb,Tm@NaLuF₄ (16 mg/kg wt) into the colorectal cancer models at various time points (1 h, 6 h, 24 h, 72 h, 120 h and 240 h) (n=3).

Figure S8 Mass accumulations (%ID) of Lu^{3+} in the main normal organs and the tumours via intraperitoneal (a) or intravenous (b) injection of cit-NaLuF₄:Yb,Tm@NaLuF₄ (16 mg/kg wt) into the colorectal cancer models at various time points (1 h, 6 h, 24 h, 72 h, 120 h and 240 h) (n=3).