Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting information

Layered manganese-based metal-organic framework as a high capacity electrode material for supercapacitors

Xianmei Wang^a, Xiuxiu Liu^a, Hongren Rong^a, Yidan Song^a, Hao Wen^a,

Qi Liu* a,b

"School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced

Catalytic Materials and Technology, and Advanced Catalysis and Green

Manufacturing Collaborative Innovation Center, Changzhou University, 1 Gehu Road,

Changzhou, Jiangsu 213164, P. R. China. E-mail: liuqi62@163.com, Tel./Fax:+86

51986330906

^bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing,

Jiangsu 210093, China

Figure S1 TGA curve of as-synthesized Mn-LMOF

Figure S2 3D view of Mn–LMOF

Electrode material	Specific capacitance	Electrode	Remarks	Ref.
		configuration		
Co-MOF film	206 F g ⁻¹ at 0.6 Ag ⁻¹ in 1	Three	Potential window 0-0.5 V for	24
	M LiOH solution		charge-discharge	54
Co-BPDC MOF film	179 F g ⁻¹ at 10 mVs ⁻¹ in	Three	Specific capacitance was	25
	0.5 M LiOH solution		measured in cyclic voltammetry	33
meso-and	230.5 F g ⁻¹ at 0.5 A g ⁻¹ in	Three	Potential window 0-0.6 V for	36
microporous Co-	1 M LiOH solution		charge-discharge	
MOF				
PANI-ZIF-67-CC	2146 mF cm ⁻² at 10 mV	Three	Areal capacitance was measured	37
	s ⁻¹ in 3 M KCl solution		in cyclic voltammetry	
2D Layered Co-	2474 F g ⁻¹ at 1 A g ⁻¹ in 1	Three	High rate capability, good cyclic	20
LMOF	M KOH solution		stability	30
Layered structural	2654 F g ⁻¹ at 1 A g ⁻¹ in 5	Three	High rate capability, good cyclic	39
Co-MOF nanosheets	M KOH solution		stability	
Zr-LMOF	1144 F g ⁻¹ at 5 mVs ⁻¹ in 6	Three	Specific capacitance was	41
	M KOH solution		measured in cyclic voltammetry	
ZIF-67 microflowers	202.6 F g ⁻¹ at 0.5 A g ⁻¹ in	Three	Potential window 0-0.45 V for	42
	1 M KOH solution		charge-discharge	
Ni-MOF-24	1127 F g ⁻¹ at 0.5 A g ⁻¹ in	Three	High rate capability, good cyclic	12
	6 M KOH solution		stability	43

some MOF-based and Mn-based materials electrodes reported in previous literature.

Table S1. Specific capacitance of Mn-LMOF electrode in this study, compared with

Zn-doped Ni-MOF	1620 F g ⁻¹ at 0.25 A g ⁻¹ in 6 M KOH solution	Three	High rate capability, good cyclic stability	44
Ni ₃ (btc) ₂ ·12H ₂ O	726 F g ⁻¹ at 1 A g ⁻¹ in 2 M KOH solution	Three	Potential window 0–0.5 V for charge–discharge	45
Ni-DMOF-ADC	552 F g ⁻¹ at 1 A g ⁻¹ in 2 M KOH solution	Three	Potential window 0-0.45 V for charge-discharge	46
Ni ₃ (HITP) ₂	111 F g ⁻¹ at 1 A g ⁻¹ and 18 μ F cm ⁻² in 1 M TEABF ₄ /ACN	Two	Potential window 0–1.0 V for charge–discharge	50
$Cd_2(TDC)_2(L)_2 \cdot 2H_2O$	22 F g ⁻¹ at 2.5 mA g ⁻¹ in 1 M Li_2SO_4 solution	Two	Potential window 0–1.3 V for charge–discharge	51
Cu-LCP	1274 and 1102 F g ⁻¹ at 1 A g ⁻¹ in 1 M LiOH and 1M KOH solution respectively	Three	High rate capability, good cyclic stability, and potential window 0–0.5 V for charge– discharge	53
CNTs@Mn-MOF	203.1 F g ⁻¹ at 1 A g ⁻¹ in 1 M Na ₂ SO ₄	Three	Potential window 0–1.0 V for charge–discharge	55
MnO2 nanoparticles	221.2 F g ⁻¹ at 2 mVs ⁻¹ in 0.25 M Na ₂ SO ₄	Three	Potential window -0.1–0.9 V for charge–discharge	7
Mn ₂ O ₃ hollow microspheres	1651 F g ⁻¹ at 0.5 A g ⁻¹ in 6 M KOH solution	Three	High rate capability, good cyclic stability	9
Porous nanostructured Mn ₃ O ₄	232.5 F g ⁻¹ at 0.5 A g ⁻¹ in 1M Na ₂ SO ₄	Three	Potential window 0–1.0 V for charge–discharge	11
Mn-LMOF	1098 F g ⁻¹ at 1 A g ⁻¹ in 1 M KOH solution	Three	High rate capability, good cyclic stability	Present study

Figure S3 The charge-discharge curves of the Mn–LMOF electrode in KOH solution

at a current density of 3A g⁻¹.

Figure S 4 FT-IR spectra of the Mn–LMOF (a) 1000 cycles in 1 M LiOH, (b) 1000 cycles in 1 M KOH, (c) bare electrode containing Mn–LMOF, acetylene black and PTFE.

Figure S5 XRD patterns of Mn–LMOF (a) bare electrode containing Mn–LMOF, acetylene black and PTFE, (b) after 1000 cycles in 1 M KOH and (c) 1M LiOH.

Figure S6 The charge-discharge curves of the Mn–LMOF electrode in LiOH solution at a current density of 3A g^{-1} .