Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Accessing α -aminophosphonates using solvate ionic liquids.

Daniel J. Eyckens,^[b] and Luke C. Henderson*^[a]

SUPPLEMENTARY INFORMATION

- S2 General Experimental
- S3 General Procedures for synthesised compounds
- S4-S6 Characterisation of synthesized compounds
- S7-S17 NMR spectra of synthesised compounds
- S18 References

[a] DJ Eyckens, LC Henderson (Corresponding) Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Geelong, Victoria Australia, 3216 E-mail: luke.henderson@deakin.edu.au

General Experimental

All ¹H and ¹³C NMR spectra were recorded on a Jeol JNM-EX 270 MHz, Jeol JNM-EX 400 MHz or Bruker AVANCE III 500 MHz standard bore (solution) as indicated. Samples were dissolved in deuterated chloroform (CDCl₃) with the residual solvent peak used as an internal reference (CDCl₃ – δ H 7.26 ppm). Proton spectra are reported as follows: chemical shift δ (ppm), (integral, multiplicity (s = singlet, br s = broad singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet), coupling constant J (Hz), assignment).

Thin Layer Chromatography (TLC) was performed using aluminium-backed Merck TLC Silica gel 60 F254 plates, and samples were visualised using 254 nm ultraviolet (UV) light, and potassium permanganate/potassium carbonate oxidising dip (1:1:100 KMnO₄:K₂CO₃:H₂O w/w).

Column Chromatography was performed using silica gel 60 (70-230 mesh). All solvents used were AR grade. Specialist reagents were obtained from Sigma-Aldrich Chemical Company and used without further purification. Petroleum spirits refers to the fraction boiling between 40-60 °C.

Note that all compounds synthesised have been previously synthesised, thus only ¹H NMR is provided here for comparison.

Experimental Section

Preparation of Solvate Ionic Liquids (G3TFSI and G4TFSI)

Lithium bis(trifluromethanesulfonyl)amide (63.53 g, 0.22 mol) was added to tri-/tetra-ethylene glycol dimethyl ether (0.22 mol) in a round bottom flask and heated to 60 °C under nitrogen atmosphere overnight. The resulting product is a viscous, amber liquid. Some removal of adventitious water may be required (if the liquid is colourless); achieved through heating to 120 °C under high vacuum for up to 4 hours. This process can be loosely assessed to be complete when the liquid goes from colourless to amber.

General preparation of α-aminophosphonates

Monomers

A round bottom flask was charged with aldehyde (1.00 mmol), which was dissolved in either [G3(Li)]⁺ TFSI or [G4(Li)]⁺ TFSI (0.5 mL). Aniline (1.00 mmol) was then added, before the addition of diphenyl phosphite (0.230 mL, 1.20 mmol) and stirred at room temperature for the given time period. Diethyl ether (10 mL) was added at the conclusion of the reaction, before the addition of deionised water (10 mL) causing a fine precipitate to form. The removal of diethyl ether under reduced pressure afforded a suspension of precipitate in the aqueous phase, which was then filtered washing with excess water and petroleum spirits (40—60 °C). The solid compound was collected and analysed by ¹H NMR.

Dimers

A round bottom flask was charged with aldehyde (1.00 mmol), which was dissolved in either $[G3(Li)]^+$ TFSI or $[G4(Li)]^+$ TFSI (0.5 mL). Phenylenediamine (0.5 mmol) was then added, before the addition of diphenyl phosphite (0.299 mL, 1.56 mmol) and stirred at room temperature for 10 minutes. Diethyl ether (10 mL) was added at the conclusion of the reaction, before the addition of deionised water (10 mL). Precipitate formed from the organic phase at reduced temperature (0 °C – r.t.), which was then filtered washing with excess water and petroleum spirits (40—60 °C). This process may have been repeated to obtain any product that may have remained in the organic phase after filtration. Any purification was achieved through redissolving crude material in Et_2O and repeating the above process. The solid compound was collected and analysed by ¹H NMR.

Compound reports

Diphenyl (phenyl(phenylamino)methyl)phosphonate 3

White solid (0.377 g, 91%). Analytically pure by ¹H NMR and consistent with literature reports¹. ¹H NMR (270 MHz, CDCl₃): δ 7.55 (2H, m, Ar-H), 7.22 (14H, m, Ar-H), 6.85 (2H, m, Ar-H), 6.74 (1H, m, Ar-H), 6.65 (2H, m, Ar-H), 5.14 (1H, d, J_{H-P} = 27 Hz, CH), NH not seen.

Diphenyl (((4-nitrophenyl)amino)(phenyl)methyl)phosphonate 5a

Sandy-brown solid (0.297 g, 64%). Analytically pure by ¹H NMR and consistent with literature reports¹. ¹H NMR (270 MHz, CDCl₃): δ 7.97 (2H, d, J = 8.1 Hz, Ar-H), 7.52 (2H, m, Ar-H), 7.22 (12H, m, Ar-H), 6.72 (2H, d, J = 8.1 Hz Ar-H), 6.57 (2H, d, J = 8.1 Hz, Ar-H), 6.14 (1H, bs, NH) 5.18 (1H, dd, J_{H-P} =

8.1, 24.3 Hz, CH).

Diphenyl (((4-chlorophenyl)amino)(phenyl)methyl)phosphonate 5b

White solid (0.430 g, 96%). Analytically pure by ¹H NMR and consistent with literature reports¹. ¹H NMR (270 MHz, CDCl₃): δ 7.52 (2H, m, Ar-H), 7.17 (12H, m, Ar-H), 6.82 (2H, m, Ar-H), 6.56 (2H, m, Ar-H), 5.07 (1H, d, J_{H-P} = 27 Hz, CH), NH not seen.

Diphenyl (((4-hydroxyphenyl)amino)(phenyl)methyl)phosphonate 5c

White solid (0.395 g, 92%); m.p. 118.2 °C; ¹H NMR (270 MHz, CDCl₃): δ 7.53 (2H, m, Ar-H), 7.36-7.07 (11H, m, Ar-H), 6.84 (2H, m, Ar-H), 6.63 (2H, d, J = 8 Hz, Ar-H), 6.54 (2H, d, J = 8 Hz, Ar-H), 5.04 (1H, d, J_{H-P} = 24 Hz, CH), NH and OH not seen; ¹³C NMR (100 MHz, CDCl₃): δ 150.39, 150.32, 150.23, 148.81, 129.82, 129.72, 128.91, 128.89, 128.44, 128.34, 128.28, 125.48/ 125.30/ 120.80/ 120.76/ 120.45/ 120.40/ 116.23/ 115.82/ 71.89/ 70.45/ 59.13; ³¹P NMR (202 MHz, CDCl₃): δ 16.10; HRMS (ESI) calculated for

Diphenyl (((4-fluorophenyl)amino)(phenyl)methyl)phosphonate 5d

 $[C_{25}H_{22}NO_4P + H]^+$: 432.1359, found 432.1361.

White solid (0.364 g, 84%). Analytically pure by ¹H NMR and consistent with literature reports¹. ¹H NMR (270 MHz, CDCl₃): ō 7.52 (2H, m, Ar-H), 7.23 (13H, m, Ar-H), 6.83 (4H, m, Ar-H), 6.58 (2H, m, Ar-H), 5.06 (1H, d, J_{H-P} = 24.3 Hz, CH), NH not seen.

Diphenyl (((3-chlorophenyl)amino)(phenyl)methyl)phosphonate 5e

White solid (0.393 g, 81%); m.p. 135.5 °C; ¹H NMR (270 MHz, CDCl₃): δ 7.54 (2H, m, Ar-H), 7.34 (8H, m, Ar-H), 7.20 (2H, m, Ar-H), 7.07 (3H, m, Ar-H), 6.82 (2H, m, Ar-H), 6.70 (1H, m, Ar-H), 6.63 (1H, m, Ar-H), 6.50 (1H, m, Ar-H) 5.09 (1H, d, J_{H-P} = 16.2 Hz, CH), NH not seen; ¹³C NMR (100 MHz, CDCl₃):

δ 130.38, 129.90, 129.76, 129.05, 128.23, 125.61, 123.97, 120.70, 120.66, 120.35, 120.31, 113.92, 112.28; ³¹P NMR (160 MHz, CDCl₃): δ 15.33; **HRMS (ESI)** calculated for [C₂₅H₂₁ClNO₃P + H]⁺: 450.1020, found 450.1014.

Diphenyl (phenyl((3-(trifluoromethyl)phenyl)amino)methyl) phosphonate 5f

Off-white solid (0.414 g, 86%); m.p. 122.1 °C; ¹H NMR (270 MHz, CDCl₃): δ 7.54 (2H, m, Ar-H), 7.40-7.06 (12H, m, Ar-H), 6.98 (1H, m, Ar-H), 6.80 (4H, m, Ar-H), 5.14 (1H, d, J_{H-P} = 24.3 Hz, CH), NH not seen; ¹³C NMR (100 MHz, CDCl₃): δ 150.35, 146.09, 134.21, 129.91, 129.86, 129.76, 129.10, 129.07, 128.77, 128.74, 128.24, 128.18, 125.64, 125.44, 120.67, 120.63, 120.33, 120.29, 116.84, 110.54, 56.70, 55.16; ³¹P **NMR** (160 MHz, CDCl₃): δ 15.23; **HRMS (ESI)** calculated for [C₂₆H₂₁F₃NO₃P + H]⁺: 484.1284, found 484.1331.

Diphenyl (phenyl((3,5-bis(trifluoromethyl)phenyl)amino)methyl) phosphonate 5g

White solid (0.331 g, 60%); m.p. 138.4 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.54 (2H, m, Ar-H), 7.41-7.34 (3H, m, Ar-H), 7.31-7.27 (3H, m, Ar-H), 7.22-7.16 (4H, m, Ar-H), 7.13-7.08 (3H, m, Ar-H), 6.98 (2H, s, Ar-*H*), 6.78 (2H, m, Ar-*H*), 5.41 (1H, bs, N*H*), 5.15 (1H, d, J_{H-P} = 24 Hz, C*H*); ¹³C NMR (100 MHz, CDCl₃): ō 129.98, 129.78, 129.28, 129.26, 129.05, 128.20, 128.14, 125.78, 125.53, 120.56, 120.52, 120.21, 120.17, 97.26; ³¹**P NMR** (160 MHz, CDCl₃): δ 14.54; **HRMS (ESI)** calculated for [C₂₇H₂₀F₆NO₃P + H]⁺: 552.1158, found 552.1225.

Diphenyl ((4-bromophenyl)(phenylamino)methyl)phosphonate 7a

White solid (0.451 g, 91%). Analytically pure by ¹H NMR and consistent with literature reports¹. ¹H NMR (270 MHz, CDCl₃): δ 7.46 (4H, m, Ar-H), 7.32-7.06 (10H, m, Ar-H), 6.92 (2H, m, Ar-H), 6.77 (1H, m, Ar-H), 6.60 (2H, m, Ar-H), 5.09 (1H, d, J_{H-P} = 24.3 Hz, CH), NH not seen.

Diphenyl ((phenylamino)(p-tolyl)methyl)phosphonate 7b

White solid (0.384 g, 90%). Analytically pure by ¹H NMR and consistent with literature reports¹. ¹H NMR (270 MHz, CDCl₃): δ 7.44 (2H, m, Ar-H), 7.31-7.07 (12H, m, Ar-H), 6.88 (2H, m, Ar-H), 6.74 (1H, m, Ar-H), 6.65 (2H, m, Ar-H), 5.12 (1H, d, J_{H-P} = 24.3 Hz, CH), 2.33 (3H, s, CH₃), NH not seen.

Diphenyl ((4-nitrophenyl)(phenylamino)methyl)phosphonate 7c

Sandy-yellow solid (0.320 g, 69%). Analytically pure by ¹H NMR and consistent with literature reports¹. ¹H NMR (270 MHz, CDCl₃): δ 8.21 (2H, m, Ar-H), 7.75 (2H, m, Ar-H), 7.32-7.06 (10H, m, Ar-H), 6.95 (2H, m, Ar-H), 6.79 (1H, m, Ar-H), 6.58 (2H, m, Ar-H), 5.23 (1H, d, J_{H-P} = 24.3 Hz, CH), NH not seen.

Diphenyl ((4-fluorophenyl)(phenylamino)methyl)phosphonate 7d

White solid (0.337 g, 78%). Analytically pure by ¹H NMR and consistent with literature reports¹. ¹H NMR (270 MHz, CDCl₃): δ 7.52 (2H, m, Ar-H), 7.32-7.00 (12H, m, Ar-H), 6.90 (2H, m, Ar-H), 6.76 (1H, m, Ar-H), 6.63 (2H, m, Ar-H), 5.12 (1H, d, J_{H-P} = 24.3 Hz, CH), NH not seen.

Diphenyl ((2-hydroxyphenyl)(phenylamino)methyl)phosphonate 7e

White solid (0.360 g, 84%). Analytically pure by ¹H NMR and consistent with literature reports². ¹H NMR (270 MHz, CDCl₃): δ 7.32-7.23 (5H, m, Ar-H), 7.19-7.13 (5H, m, Ar-H), 7.04 (2H, d, J = 8 Hz, Ar-H), 6.98 (2H, d, J = 8 Hz, Ar-H), 6.90-6.79 (3H, m, Ar-H), 6.75 (2H, d, J = 8 Hz, Ar-H), 5.35 (1H, d, J_{H-P} = 24 Hz, CH), NH not seen

Diphenyl ((3,4-dichlorophenyl)(phenylamino)methyl)phosphonate 7f

White solid (0.382 g, 79%); m.p. 162.7 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 8.00 (1H, s, Ar-H), 7.71 (1H, m, Ar-H), 7.66 (1H, d, J = 8.4 Hz, Ar-H), 7.35 (4H, m, Ar-H), 7.19 (2H, m, Ar-H), 7.09 (4H, m, Ar-H), 6.98 (2H, d, J = 8.7 Hz, Ar-H), 6.92 (2H, d, J = 7.7 Hz, Ar-H), 6.86 (1H, dd, J = 5.3, 10.9 Hz, NH), 6.62 (1H, app. t, Ar-H), 5.77 (1H, dd, J = 10.9 Hz, J_{H-P} = 26.4 Hz, CH); ¹³C NMR (126 MHz, DMSO-d₆)

δ 150.55, 150.47, 150.30, 150.22, 147.05, 146.93, 137.69, 131.48, 131.45, 131.11, 131.08, 131.01, 130.96, 130.93, 130.37, 130.28, 129.47, 129.42, 129.35, 125.81, 121.01, 120.98, 120.71, 120.68, 118.17, 114.25, 54.27, 53.02; ³¹P **NMR** (202 MHz, DMSO-d₆): δ 15.42; **HRMS (ESI)** calculated for [C₂₅H₂₀Cl₂NO₃P + H]⁺: 484.0631, found 484.0687.

Tetraphenyl ((1,4-phenylenebis(azanediyl))bis(phenylmethylene)) bis(phosphonate) 9a

Chalky, white solid (0.242 g, 64%); m.p. 184.0 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 7.67 (4H, m, Ar-H), 7.38-7.30 (14H, m, Ar-H), 7.19 (4H, m, Ar-H), 7.10 (4H, m, Ar-H), 6.86 (4H, m, Ar-H), 6.72 (4H, d, Ar-H), 6.13 (2H, m, NH), 5.43 (2H, dd, J_{H-P} = 10, 25 Hz, CH); ¹³C NMR (126 MHz,

DMSO-d₆): δ 150.71, 150.63, 150.45, 150.37, 139.38, 139.30, 139.25, 139.17, 136.46, 130.19, 130.17, 129.83, 129.19, 129.14, 128.64, 128.24, 125.59, 125.54, 121.14, 121.11, 120.79, 120.76, 115.67, 115.57, 115.55, 56.46, 56.41, 55.21, 55.16; ³¹**P** NMR (202 MHz, DMSO-d₆): δ 17.11 (d, J_{P-P} = 24.24); HRMS (ESI) calculated for [C₄₄H₃₈N₂O₆P₂ + H]⁺: 753.2278, found 753.2360.

Tetraphenyl

bromophenyl)methylene))bis(phosphonate) 9b

Chalky, white solid (0.295 g, 65%); **m.p.** 206.5 °C; ¹**H NMR** (500 MHz, DMSO-d₆): δ 7.59 (4H, m, Ar-*H*), 7.53 (4H, m, Ar-*H*), 7.31 (8H, m, Ar-*H*), 7.16 (4H, m, Ar-*H*), 7.06 (4H, m, Ar-

H), 6.93 (4H, m, Ar-*H*), 6.67 (4H, m, Ar-*H*), 6.15 (2H, m, 2N*H*), 5.44 (2H, dd, $J_{H-P} = 10.9, 26.15 \text{ Hz}, 2CH$); ¹³**C NMR** (126 MHz, DMSO-d₆): δ 150.65, 131.31, 131.26, 130.27, Br $\rightarrow 6^{OPh}_{PN}$ $\rightarrow 6^{OPh}_{P$

Tetraphenyl ((1,4-phenylenebis(azanediyl))bis((4-nitrophenyl)methylene))bis(phosphonate) 9c

Mustard-yellow solid (0.141 g, 33%); **m.p.** 141.8 °C; ¹**H NMR** (500 MHz, DMSO-d₆): δ 8.27 (4H, d, *J* = 8.1 Hz, Ar-*H*), 7.86 (4H, m, Ar-*H*), 7.36 (8H, m, Ar-*H*), 7.19 (7H, m, Ar-*H*), 7.09 (8H, m, Ar-*H*), 6.75 (1H, m, Ar-*H*), 5.71 (2H, m, 2C*H*), 2N*H* not seen; ¹³**C NMR** (126 MHz, DMSO-d₆): δ 157.76, 150.55, 150.47, 150.43, 150.35, 147.63, 147.60, 145.51,

130.34, 130.29, 129.82, 129.16, 129.11, 125.72, 125.67, 123.69, 123.66, 120.91, 120.88, 120.85, 119.24, 115.66, 69.80, 68.50; ³¹P NMR (202 MHz, DMSO-d₆): δ 14.29; **HRMS (ESI)** calculated for $[C_{44}H_{37}N_4O_{10}P_2 + H]^+$: 843.1979, found 843.1978,

Tetraphenyl ((1,3-phenylenebis(azanediyl))bis(phenylmethylene))bis(phosphonate) 11

Chalky, white solid (0.128 g, 34%); **m.p.** 95.5 °C; ¹**H NMR** (500 MHz, DMSO-d₆): δ 7.64 (4H, m, Ar-*H*), 7.30 (15H, m, Ar-*H*), 7.15 (4H, m, Ar-*H*), 7.08 (4H, m, Ar-*H*), 6.84 (4H, m, Ar-*H*), 6.74 (1H, m, Ar-*H*), 6.48 (2H, bs, 2N*H*), 6.23 (2H, m, Ar-*H*), 5.56 (2H, m, 2C*H*); ¹³**C NMR** (126 MHz, DMSO-d₆): δ 157.76, 150.68, 150.60, 150.41, 150.33, 148.25, 148.12, 136.40, 136.33, 130.22, 130.19, 130.16, 129.83, 129.54, 129.21, 129.16, 128.63, 128.26, 128.24, 125.66, 125.61,

121.18, 121.16, 121.13, 121.10, 120.81, 120.78, 119.25, 115.67, 105.20, 98.11, 55.24, 53.99.; ³¹**P** NMR (202 MHz, DMSO-d₆): δ 17.00; **HRMS (ESI)** calculated for [C₄₄H₃₈N₂O₆P₂ + H]⁺: 753.2278, found 753.2281.

Tetraphenyl ((1,2-phenylenebis(azanediyl))bis(phenylmethylene))bis(phosphonate) 13

Yellow/brown solid (0.040 g, 9% by ¹H NMR); **m.p.** 145.8 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 8.53 (2H, s, Ar-*H*), 7.65 (4H, d, *J* = 7.35 Hz, Ar-*H*), 7.35 (4H, m, Ar-*H*), 7.29 (4H, m, Ar-*H*), 7.18 (4H, m, Ar-*H*), 7.08 (4H, d, *J* = 7.75 Hz, Ar-*H*), 6.84 (4H, d, *J* = 7.75 Hz, Ar-*H*), 6.74 (4H, d, *J* = 8.05 Hz, Ar-*H*), 6.50 (4H, m, Ar-*H*), 6.15 (2H, m, 2N*H*), 5.41 (2H, dd, *J*_{H-P} = 10.95, 25.8 Hz, 2C*H*); ¹³C NMR

(126 MHz, DMSO-d₆): δ 150.29, 150.21, 150.01, 149.93, 149.42, 139.39, 139.25, 135.96, 129.76, 129.75, 128.78, 128.74, 128.20, 128.19, 127.83, 125.18, 125.12, 120.71, 120.68, 120.36, 120.32, 115.45, 115.35, 64.95, 56.12, 54.87, 15.20. ; ³¹P NMR (202 MHz, DMSO-d₆): δ 17.07; HRMS (ESI) calculated for $[C_{44}H_{38}N_2O_6P_2 + Na]^+$: 775.2097, found 775.2436

Diphenyl (((4-(((diphenoxyphosphoryl)(p-tolyl)methyl)amino)phenyl)amino)(phenyl)methyl)phosphonate 14

A round bottom flask was charged with benzaldehyde (0.051 mL, 0.5 mmol), which was dissolved in either $[G3(Li)]^+$ TFSI or $[G4(Li)]^+$ TFSI (0.5 mL). 1,4-Phenylenediamine (0.054 g, 0.5 mmol) was then added, before the addition of diphenyl phosphite (0.299 mL, 1.56 mmol)

and stirred at room temperature for 5 minutes. Following this, p-tolualdehyde (0.059 mL, 0.5 mmol) was added to the reactionmixture, and allowed to stir for a further 5 mins. Diethyl ether (10 mL) was added at the conclusion of the reaction, before the addition of deionised water (10 mL). Precipitate formed from the organic phase at reduced temperature (0 °C – r.t.), which was then filtered washing with excess water and petroleum spirits (40—60 °C). The solid compound was collected and analysed by ¹H NMR, proving to be the desired compound as a chalky, white solid (0.164 g, 43%); **m.p.** 192.2 °C; ¹H **NMR** (500 MHz, DMSO-d₆): δ 7.63 (2H, m, Ar-*H*), 7.49 (2H, m, Ar-*H*), 7.30 (11H, m, Ar-*H*), 7.13 (6H, m, Ar-*H*), 7.05 (4H, m, Ar-*H*), 6.83 (4H, m, Ar-*H*), 6.66 (4H, q, *J* = 6.2 Hz, Ar-*H*), 6.07 (1H, m, N*H*), 6.01 (1H, m, N*H*), 5.35 (2H, m, 2C*H*), 2.25 (3H, s, CH₃); ¹³C **NMR** (126 MHz, DMSO-d₆): δ 136.47, 133.34, 130.19, 130.16, 129.23,

129.06, 128.64, 125.55, 121.14, 121.11, 120.83, 120.79, 120.76, 115.58, 21.19; ³¹**P** NMR (202 MHz, DMSO-d_6): δ 17.24; **HRMS (ESI)** calculated for [C₄₅H₄₀N₂O₆P₂ + H]⁺: 767.2434, found 767.2605.

NMR spectra of synthesised compounds.

¹H NMR (400 MHz, CDCl₃) of diphenyl (((4-hydroxyphenyl)amino)(phenyl)methyl)phosphonate 5c

¹³C NMR (100 MHz, CDCl₃) of diphenyl (((4-hydroxyphenyl)amino)(phenyl)methyl)phosphonate 5c

¹H NMR (270 MHz, CDCl₃) of diphenyl (((3-chlorophenyl)amino)(phenyl)methyl)phosphonate 5e

¹³C NMR (100 MHz, CDCl₃) of diphenyl (((3-chlorophenyl)amino)(phenyl)methyl)phosphonate 5e

¹H NMR (270 MHz, CDCl₃) of diphenyl (phenyl((3-(trifluoromethyl)phenyl)amino)methyl) phosphonate 5f

¹³C NMR (100 MHz, CDCl₃) of diphenyl (phenyl((3-(trifluoromethyl)phenyl)amino)methyl) phosphonate 5f

¹H NMR (270 MHz, CDCl₃) of diphenyl (phenyl((3,5-bis(trifluoromethyl)phenyl)amino)methyl) phosphonate 5g

¹³C NMR (100 MHz, CDCl₃) of diphenyl (phenyl((3,5-bis(trifluoromethyl)phenyl)amino)methyl) phosphonate 5g

¹H NMR (400 MHz, CDCl₃) of diphenyl ((3,4-dichlorophenyl)(phenylamino)methyl)phosphonate **7f**

¹³C NMR (100 MHz, d₆-DMSO) of diphenyl ((3,4-dichlorophenyl)(phenylamino)methyl)phosphonate **7f**

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 fl(ppm) ¹H NMR (500 MHz, d₆-DMSO) of tetraphenyl ((1,4-phenylenebis(azanediyl))bis(phenylmethylene)) bis(phosphonate) 9a

¹³C NMR (126 MHz, CDCI₃) of tetraphenyl ((1,4-phenylenebis(azanediyl))bis(phenylmethylene)) bis(phosphonate) 9a

 13 C NMR (126 MHz, DMSO-d₆) of tetraphenyl ((1,4-phenylenebis(azanediyl))bis((4-nitrophenyl)methylene))bis(phosphonate) **9c**

¹H NMR (500 MHz, DMSO-d₆) of tetraphenyl ((1,3-phenylenebis(azanediyl))bis(phenylmethylene))bis(phosphonate) **11**

¹³C NMR (126 MHz, DMSO-d₆) of tetraphenyl ((1,3-phenylenebis(azanediyl))bis(phenylmethylene))bis(phosphonate) 11

185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 f1 (ppm)

¹H NMR (500 MHz, DMSO-d₆) of tetraphenyl ((1,2-phenylenebis(azanediyl))bis(phenylmethylene))bis(phosphonate) **13**

¹³C NMR (126 MHz, DMSO-d₆) of tetraphenyl ((1,2-phenylenebis(azanediyl))bis(phenylmethylene))bis(phosphonate) 13

References

- 1. da Silva, C. D. G.; Oliveira, A. R.; Rocha, M. P. D.; Katla, R.; Botero, E. R.; da Silva, É. C.; Domingues, N. L. C., A new, efficient and recyclable [Ce(I-Pro)]2(Oxa) heterogeneous catalyst used in the Kabachnik–Fields reaction. *RSC Adv.* **2016**, *6* (32), 27213-27219.
- Wu, M.; Liu, R.; Wan, D., Convenient One-Pot Synthesis of α-Amino Phosphonates in Water Using p-Toluenesulfonic Acid as Catalyst for the Kabachnik–Fields Reaction. *Heteroatom Chemistry* 2013, 24 (2), 110-115.