# Simple and efficient Fmoc removal in ionic liquid.

Maria Luisa Di Gioia, \*<sup>a</sup> Antonio De Nino,<sup>b</sup> Loredana Maiuolo,<sup>b</sup> Monica Nardi, <sup>b,c</sup> Fabrizio Olivito<sup>d</sup> and Antonio Procopio<sup>d</sup>

<sup>a</sup>Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende (CS), 87036, Italy

<sup>b</sup> Dipartimento di Chimica, Università della Calabria, Cubo 12C, 87036, Arcavacata di Rende (CS), Italy

<sup>c</sup> Dipartimento di Agraria, Università Telematica San Raffaele, Via di Val Cannuta, 00166,247, Rome, Italy

<sup>d</sup>Dipartimento di Scienze della Salute, Università Magna Graecia, Viale Europa, 88100, Germaneto (CZ), Italia.

Supplementary Material

| INDICE                                                                                                         | Pag. |
|----------------------------------------------------------------------------------------------------------------|------|
| Experimental Section                                                                                           | 3    |
| Spectroscopic data (1q-1u)                                                                                     | 4    |
| General procedure for the <i>N</i> -Fmoc removal of amines 1a-i in [Bmim][BF <sub>4</sub> ].                   | 6    |
| General procedure for the <i>N</i> -Fmoc removal of amino acid methyl esters 1j-u in [Bmim][BF <sub>4</sub> ]. | 7    |
| Spectroscopic data (3j-3u).                                                                                    | 8    |
| <sup>1</sup> H NMR spectrum (1q-1u)                                                                            | 13   |
| <sup>1</sup> H NMR spectrum (2a-2i)                                                                            | 18   |
| <sup>1</sup> H NMR spectrum (3j-3u)                                                                            | 26   |
| <sup>13</sup> C NMR spectrum (1q-1u)                                                                           | 38   |
| <sup>13</sup> C NMR spectrum (3k-3u)                                                                           | 43   |
| HRMS (ESI) spectrum (1q-1u)                                                                                    | 54   |
| HRMS (ESI) spectrum (3j-3n), (3q-3u)                                                                           | 59   |

#### **Experimental Section**

Commercially available reagents were purchased from Sigma-Aldrich Chemical Co. (Milano, Italy) and used as supplied unless stated otherwise. All syntheses were carried out in atmospheric conditions. <sup>1</sup>H NMR spectra were recorded at 300 MHz, while <sup>13</sup>C NMR spectra were measured at 75 MHz. Spectral analysis was performed at 293 K on diluted solutions of each compound by using CDCl<sub>3</sub> as the solvent. Chemical shifts ( $\delta$ ) are reported in ppm and referenced to CDCl<sub>3</sub> (7.25 ppm for <sup>1</sup>H and 77.0 ppm for <sup>13</sup>C spectra). Coupling costants (J) are reported in Hertz (Hz). Reaction mixtures were monitored by thin layer chromatography (TLC) using Merck Silica gel 60-F<sub>254</sub> precoated glass plates, and UV light (254 nm) or 0.2% ninhydrin in ethanol and charring as visualizing agent. Evaporation of solvents was performed at reduced pressure using a rotary vacuum evaporator. Chiral GC analysis were carried out using a Thermo Gas Chromatograph instrument. Chiral GC analyses of enantiomeric compounds Ac-DL-AlaOMe and Ac-L-AlaOMe were performed by using a 25 m × 0.25 mm, diethyl tertbutyldimethylisilyl- $\beta$ -cyclodextrine chiral capillary column.

The GC-MS Shimadzu workstation is constituted by a GC 2010 (provided of a 30 m-QUADREX 007–5MS capillary column, operating in "split" mode, 1 ml min–1 flow of He as carrier gas) and a 2010 quadrupole mass-detector. LC-MS analysis were carried using an Agilent 6540 UHD Accurate - Mass Q-TOF LC–MS (Agilent, Santa Clara, CA) fitted with a electrospray ionisation source (Dual AJS ESI) operating in positive ion mode. Chromatographic separation was achieved using a C18 RP analytical column (Poroshell 120, SB-C18,  $50 \times 2.1$  mm,  $2.7 \mu$ m) at 30°C with a elution gradient from 5% to 95% of B over 13 min., A being H<sub>2</sub>O (0.1% FA) and B CH<sub>3</sub>CN (0.1% FA). Flow rate was 0.4 ml/min.

*N*-Fmoc amines **1a–i** and *N*-Fmoc  $\alpha$ -amino acid methyl esters **1j–u** were prepared according to previously published protocol.<sup>14b</sup> Spectral data of **1a–p** agreed with those already reported for the same compounds prepared as previously reported.<sup>14b</sup>

#### Spectroscopic data (1q-1u)

*N*-(9-Fluorenylmethoxycarbonyl) glycine *t*-butyl ester (1q): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  = 7.68- 7.52 (m, 4 H, Ar*H*), 7.32-7.22 (m, 4H, Ar*H*), 6.38 (br s, 1H, N*H*), 3.97 (t, *J* = 6.0 Hz, 1 H, C*H*<sub>Fmoc</sub>), 3.82 (d, *J* = 5.1 Hz, 2 H, C*H*<sub>2Fmoc</sub>), 3.23 (s, 2 H, C*H*<sub>2</sub>), 1.38 (s, 9H, C(C*H*<sub>3</sub>)<sub>3</sub>) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$ = 171.8, 8, 156.1, 145.9, 141.9, 128.9, 127.5, 124.8, 120.2, 81.4, 52.7, 42.4, 31.7, 28.3.

HRMS (ESI) for  $(C_{21}H_{13}NO_4) + Na^+$  : calcd 376.1525, found 376.1518 (M+Na)+

*N*-(9-Fluorenylmethoxycarbonyl) phenylalanine benzyl ester (1r): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  = 7.78 (d, *J*= 7.2 Hz, 2 H, Ar*H*), 7.62 (d, *J*= 7.2 Hz, 2H, Ar*H*), 7.35- 7.17 (m, 12 H, Ar*H*), 7.00-6.97 (m, 2H, Ar*H* + N*H*), 5.12 (dd, *J*= 12.0 Hz, *J* = 9.6 Hz, 1 H,  $\alpha$ -C*H*), 4.82- 4.79 (m, 2 H, OC*H*<sub>2</sub>Ph), 4.14 (m, 1 H, C*H*<sub>Fmoc</sub>), 4.10-4.04 (m, 2 H, C*H*<sub>2Fmoc</sub>), 3.01-3.05 (m, 2 H, C*H*<sub>2</sub>Ph) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$ = 172.1, 8, 158.6, 144.2, 141.6, 137.0, 136.0, 135.9, 129.4, 128.6, 128.5, 128.4, 127.6, 126.9, 124.7, 120.0. HRMS (ESI) for (C<sub>31</sub>H<sub>27</sub>NO<sub>4</sub>)+ Na]<sup>+</sup> : calcd 500.1838, found 500.1824 (M+Na)<sup>+</sup>

*N*-(9-Fluorenylmethoxycarbonyl) tyrosine (*O*-*t*-butyl) *t*-butyl ester (1s): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  = 7.75 (d, 2 H, *J*= 7.5, Ar*H*), 7.58 (d, 2H, *J* = 7.4, Ar*H*), 7.42-7.31 (m, 4H, Ar*H*), 7.11-7.03 (m, 2 H, Ar*H*), 6.93-6.88 (m, 2H, Ar*H*), 5.30 (d, 1H, *J* = 8.4 Hz, N*H*), 4.54-4.39 (m, 3 H, α-C*H* + C*H*<sub>2Fmoc</sub>), 4.34 (t, 1H, *J* = 8.6, C*H*<sub>Fmoc</sub>), 3.04 (m, 1 H, β-C*H*<sub>2</sub>), 2.80 (m, 1 H, β-C*H*<sub>2</sub>), 1.40 (s, 9H, C(C*H*<sub>3</sub>)<sub>3</sub>), 1.39 (s, 9H, C(C*H*<sub>3</sub>)<sub>3</sub>) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$ = 170.6, 155.5, 154.2, 144.5, 143.9, 134.6, 129.1, 127.7, 127.0, 124.3, 120.3, 119.7, 82.6, 81.1, 66.9, 55.2, 47.3, 37.9, 28.8, 27.9. HRMS (ESI) for (C<sub>32</sub>H<sub>37</sub>NO<sub>5</sub>)+ H]<sup>+</sup> : calcd 516.2750, found 516.2664, 538.2570 (M+Na)<sup>+</sup>.

*N*-(9-Fluorenylmethoxycarbonyl) glutamic acid (*O-tert*-butyl) methyl ester (1t): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  = 7.69 (d, *J* = 7.5 Hz, 2 H, Ar*H*), 7.52 (d, *J*= 4.8 Hz, 2H, Ar*H*), 7.35-7.21 (m, 4H, Ar*H*), 5.42 (d, *J*= 8.1 Hz, 1 H, N*H*), 4.74-4.38 (m., 3 H, α-C*H*+ C*H*<sub>2Fmoc</sub>), 3.68 (s, 3H, OC*H*<sub>3</sub>), 2.32–2.22 (m, 2 H, β-C*H*<sub>2</sub>), 2.13 (m, 1H, γ-C*H*), 2.06 (m, 1H, γ-C*H*), 1.37 (s, 9 H, C(C*H*<sub>3</sub>)<sub>3</sub>) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$ = 171.4, 170.9, 154.9, 142.7, 140.3, 126.6, 126.0, 124.0, 118.9, 79.8, 66.0, 52.4, 51.4, 46.1, 30.4, 27.0, 26.2 HRMS (ESI) for (C<sub>25</sub>H<sub>29</sub>NO<sub>6</sub>)+ H]<sup>+</sup>: calcd 440,2073, found 440.2135, 462.1891 (M+ Na)<sup>+</sup>.

*N*-(9-Fluorenylmethoxycarbonyl) lysine (*N*-Boc) methyl ester (1u): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  = 7.53 (d, *J* = 6.9 Hz, 2 H, Ar*H*), 7.33 (d, *J* = 7.5 Hz, 2H, Ar*H*), 7.26-7.19 (m, 4H, Ar*H*), 5.39 (d, *J* = 7.8 Hz, 1 H, N*H*), 4.53 (m, 1 H, N*H*), 4.34-4.27 (m, 3 H,  $\alpha$ -C*H* + C*H*<sub>2Fmoc</sub>), 4.17 (t, *J* = 6.9 Hz, 1H, C*H*<sub>Fmoc</sub>), 3.67 (s, 3H,

OCH<sub>3</sub>), 3.04- 3.02 (m, 2 H, ε-CH<sub>2</sub>), 1.77 (m, 1H, β-CH), 1.63 (m, 1H, β-CH), 1.42-1.16 (m, 4H, γ-CH<sub>2</sub> + δ-CH<sub>2</sub>), 1.36 (s, 9 H, C(CH<sub>3</sub>)<sub>3</sub>) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$ = 172.9, 156.1, 155.9, 143.7, 141.3, 127.6, 127.0, 125.1, 119.9, 80.0, 66.9, 53.7, 52.4, 47.1, 40.2, 32.1, 29.6, 28.4, 22.3.

HRMS (ESI) for  $[(C_{27}H_{34}N_2O_6 + H]^+$ : calcd 483,2495 found 483.2484, 505.2306  $(M+Na)^+$ .

#### General procedure for the *N*-Fmoc removal of amines 1a-i in [Bmim][BF<sub>4</sub>].

To a magnetically stirred mixture of *N*-Fmoc protected amines **1a-i** (1 mmol) and  $[Bmim][BF_4]$  (1 mL), Et<sub>3</sub>N (3 mmol) was added and the mixture was stirred at room temperature for 4-8 min. TLC monitored the reaction. Diethyl ether was added after the completion of reaction and the IL settled at the bottom. The supernatant was decanted off and the IL was washed with Et<sub>2</sub>O (3 × 2 mL). The combined Et<sub>2</sub>O extracts were acidified with an aqueous solution of 1N HCl and separated. The aqueous phase was then basified with sat. aq NaHCO<sub>3</sub> and finally extracted with diethyl ether. The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and filtered. The products were isolated after evaporation of the diethyl ether to yield the free amines **2a-i** in 80-93 % yields. Spectroscopic data showed full consistency of the spectra with the pure products.

# General procedure for the *N*-Fmoc removal of amino acid methyl esters 1j-u in [Bmim][BF<sub>4</sub>].

To a magnetically stirred mixture of *N*-Fmoc amino acid methyl esters **1**j-u (1 mmol) and  $[Bmim][BF_4]$  (1 mL), Et<sub>3</sub>N (3 mmol) was added and the mixture was stirred at room temperature for 8-15 min. TLC monitored the reaction. Diethyl ether was added after the completion of reaction and the IL settled at the bottom. The supernatant was decanted off and the IL was washed with Et<sub>2</sub>O ( $3 \times 2$  mL). The combined Et<sub>2</sub>O extracts were acidified with an aqueous solution of 1N HCl (for compounds **1q-u** bearing acid-sensitive protecting group a 5% aqueous solution of citric acid was used) and separated. The aqueous phase was then basified with sat. aq NaHCO3 and finally extracted with diethyl ether. The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and filtered. The products were isolated after evaporation of the diethyl ether to yield the free amino acid methyl ester 2j-u in 75-88% yields. Compounds 2j-u were acetylated in order to perform GC/MS analysis. N-Acetylation was achieved dissolving 2j-u in DCM (5 mL) and adding acetic anhydride (1 mL) and a 9% aqueous solution of NaHCO<sub>3</sub> (5 mL). The mixture was maintained under magnetic stirring at room temperature for 4 h. The organic layer was separated and the aqueous phase was extracted with three additional portions of DCM (3 x 10 mL). The combined organic layers were washed with a 9% aqueous solution of NaHCO<sub>3</sub>, twice with aqueous HCl 1 N (or a 5% aqueous solution of citric acid), once with brine and finally dried (Na<sub>2</sub>SO<sub>4</sub>). The solvent was evaporated under reduced pressure to afford

the corresponding *N*-acetyl derivatives 3j-u as colourless oil in quantitative yield. Spectroscopic data for 3j-n compared to those reported in the literature.<sup>2a</sup>

#### Spectroscopic data (3j-3u).

*N*-Acetyl alanine methyl ester (3j): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 6.28$ (s, 1 H, N*H*), 4.58 (m, 1 H $\alpha$ -C*H*), 3.70 (s, 3 H, OC*H*<sub>3</sub>), 2.02 (s, 3 H, C*H*<sub>3</sub>CO), 1.40 (d, *J* = 7.2 Hz, 3 H, *CH*<sub>3</sub>) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 173.7$ , 169.5, 52.4, 48.0, 23.1, 18.6 ppm. GC/MS (EI): *m/z* (%) 145 (13) [(M)<sup>+</sup>], 102 (86 (70), 59 (5), 44 (100). HRMS (ESI) for ([C<sub>6</sub>H<sub>11</sub>NO<sub>3</sub>] + Na)<sup>+</sup> : calcd 168.0637, found 168.0630 [M+Na]<sup>+</sup>.

*N*-Acetyl valine methyl ester (3k): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C): δ = 6.22 (d, 1 H, N*H*, *J* = 6.6 Hz), 4.55 (dd, *J* = 8.7, *J* = 5.1 Hz, 1 H, α-C*H*), 3.74 (s, 3 H, OC*H*<sub>3</sub>), 2.13 (m, 1 H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 2.01 (s, 3 H, C*H*<sub>3</sub>CO), 0.93 (d, *J* = 6.9 Hz, 3 H, CH(*CH*<sub>3</sub>)<sub>2</sub>), 0.90 (d, *J* = 6.9 Hz, 3 H, CH(*CH*<sub>3</sub>)<sub>2</sub>) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C): δ= 172.7, 170.2, 57.1, 52.1, 31.2, 23.1, 18.8, 17.8 ppm. GC/MS (CI): *m/z* (%) 214 (13) [(M + C<sub>3</sub>H<sub>5</sub>)<sup>+</sup>], 202 (16) [(M + C<sub>2</sub>H<sub>5</sub>)<sup>+</sup>], 174 (60) [(M + H)<sup>+</sup>], 156 (9), 142 (65), 132 (50), 114 (100), 101 (7). HRMS (ESI) for ([C<sub>8</sub>H<sub>15</sub>NO<sub>3</sub>] + H)<sup>+</sup> : calcd. 174.1130, found 174.1134 [M+H]<sup>+</sup>.

**N-Acetyl leucine methyl ester (3l).** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 6.50$  (d, J = 7.68 Hz, 1H, NH), 4.52 (m, 1 H,  $\alpha$ -CH), 3.69 (s, 3 H, OCH<sub>3</sub>), 1.99 (s, 3 H, CH<sub>3</sub>CO), 1.62-1.40 (m, 3 H, CH<sub>2</sub>CH), 1.40–1.26 (m, 1 H, CH<sub>2</sub>), 0.85-0.87 (m, 6 H,

CH(*CH*<sub>3</sub>)<sub>2</sub>) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$ = 173.8, 170.1, 52.1, 50.6, 41.3, 24.7, 22.8, 22.7, 21.8 ppm. GC/MS (CI): *m/z* (%) 228 (20) [(M + C<sub>3</sub>H<sub>5</sub>)<sup>+</sup>], 216 (35) [(M + C<sub>2</sub>H<sub>5</sub>)<sup>+</sup>], 188 (100) [(M + H)<sup>+</sup>], 170 (5), 156 (60), 146 (55), 128 (88), 86 (9).

HRMS (ESI) for  $([C_9H_{17}NO_3] + Na)^+$ : calcd. 210.1106, found 210.1103 [M+Na]<sup>+</sup>.

*N*-Acetyl isoleucine methyl ester (3m): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C): δ = 6.06 (s, 1 H, *N*H), 4.54 (d, *J* = 8.7 Hz, *J* = 4.8 Hz, 1 H, α-C*H*), 3.67 (s, 3 H, OC*H*<sub>3</sub>), 1.96 (s, 3H, C*H*<sub>3</sub>CO), 1.78 (m, 1 H, β-C*H*), 1.35 (ddd, *J* = 7.5 Hz, *J* = 4.8 Hz, *J* = 4.8 Hz, 1H, C*H*<sub>2</sub>), 1.12 (m, 1 H, C*H*<sub>2</sub>), 0.85 (s, 3 H, C*H*<sub>3</sub>), 0.82 (s, 3 H, C*H*<sub>3</sub>) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$ = 172.7, 169.8, 56.4, 51.9, 37.9, 25.2, 23.2, 15.3, 11.5 ppm. GC/MS (CI): *m/z* (%) 228 (51) [(M + C<sub>3</sub>H<sub>5</sub>)<sup>+</sup>], 216 (32) [(M + C<sub>2</sub>H<sub>5</sub>)<sup>+</sup>], 188 (100) [(M + H)<sup>+</sup>], 157 (76), 146 (83), 128 (68), 102 (2). HRMS (ESI) for ([C<sub>9</sub>H<sub>17</sub>NO<sub>3</sub>] + H)<sup>+</sup> 188.1287, found 188.1279 [M+H]<sup>+</sup>, 210.1099 [M+Na]<sup>+</sup>.

*N*-Acetyl phenylalanine methyl ester (3n): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 7.32-7.24$  (m, 3 H, Ar*H*), 7.09 (dd, J = 7.9 Hz, J = 1.8 Hz, 2H, Ar*H*), 6.02 (d, J = 6.6 Hz, 1 H, *NH*,), 4.88 (dt, J = 7.8 Hz, J = 5.8 Hz, 1 H, α-*CH*), 3.72 (s, 3 H, OC*H*<sub>3</sub>), 3.14 (dd, J = 13.83 Hz, J = 5.7 Hz, 1H, β-*CH*), 3.07 (dd, J = 13.83 Hz, J = 5.7 Hz, 1H, β-*CH*), 1.99 (s, 3 H, *CH*<sub>3</sub>CO) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 172.0$ , 169.5, 135.8, 129.2, 128.5, 127.1, 53.1, 52.2, 37.8, 23.0 ppm. HRMS (ESI) for ([C<sub>12</sub>H<sub>15</sub>NO<sub>3</sub>] + Na)<sup>+</sup> 244.0950, found 244.0941 [M+Na]<sup>+</sup>.

*N*-Acetyl *N*-methyl valine methyl ester (**3o**) (two rotamers): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C), (two rotamers):  $\delta = 4.88$  (d, 1 H, *J*= 10.5 Hz, α-*CH*), 3.69 and 3.65 (2s, 3 H, OC*H*<sub>3</sub>), 2.94 and 2.82 (2s, 3 H, *N*-*CH*<sub>3</sub>), 2.16 and 2.12 (2s, 3 H, *CH*<sub>3</sub>CO), 2.27–2.19 (m, 1 H, β-*CH*), 0.95 and 0.94 (d, *J* = 6.6 Hz, 3 H, CH(*CH*<sub>3</sub>)<sub>2</sub>), 0.86 and 0.82 (d, *J* = 6.9 Hz, 3 H, CH(*CH*<sub>3</sub>)<sub>2</sub>] ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$ = 170.86, 169.58, 66.21, 60.32, 51.01, 31.27, 26.73,21.06, 19.00, 18.82 ppm. GC/MS (CI): *m/z* (%) 228 (51) [(M + C<sub>3</sub>H<sub>5</sub>)<sup>+</sup>], 216 (32) [(M + C<sub>2</sub>H<sub>5</sub>)<sup>+</sup>], 188 (100) [(M + H)<sup>+</sup>], 157 (76), 146 (83), 128 (68), 102 (2).

*N*-Acetyl *N*-methyl isoleucine methyl ester (**3**p). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C), (two rotamers):  $\delta = 4.99$  (d, J = 10.5 Hz, 1 H,  $\alpha$ -CH), 3.71 and 3.67 (2s, 3 H, OCH<sub>3</sub>), 2.95 and 2.83 (2s, 3 H, N-CH<sub>3</sub>), 2.14 and 2.10 (2s, 3 H, CH<sub>3</sub>CO), 2.00–1.90 (m, 1 H,  $\beta$ -CH), 1.40–1.26 (m, 1 H, CH<sub>2</sub>), 1.10–1.00 (m, 1 H, CH<sub>2</sub>), 0.97 and 0.96 (2d, J = 6.9 Hz, 3 H, CH<sub>3</sub>) ppm.

*N*-Acetyl glycine *t*-butyl ester (3q). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 3.92$ (d, *J*= 5.1 Hz, 2 H,  $\alpha$ -C*H*), 2.04 (s, 3 H, C*H*<sub>3</sub>), 1.47 (s, 9 H, C(C*H*<sub>3</sub>)<sub>3</sub>), ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 170.3$ , 169.3, 82.3, 42.1, 28.0, 22.9 ppm. HRMS (ESI) for [(C<sub>8</sub>H<sub>15</sub>NO<sub>3</sub>) + H]<sup>+</sup> 174.1130, found 174.1122 [M+H]<sup>+</sup>, 196.0945 [M+Na]<sup>+</sup>.

*N*-Acetyl phenylalanine benzyl ester (3r). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 7.35-7.21$  (m, 8 H, Ar*H*), 7.00 – 6.97 (m, 2 H, Ar*H*), 6.02 (d, J = 6.9 Hz, 1H, NH), 5.14-5.13 (m, 2 H, COOC*H*<sub>2</sub>), 4.93 (m, 1 H,  $\alpha$ -C*H*), 3.12-3.09 (m, 2 H, C*H*<sub>2</sub>Ph), 1.96 (s, 3 H, C*H*<sub>3</sub>CO) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 171.7$ , 169.9,

135.8, 135.2, 129.4, 128.8, 128.7, 128.6, 127.2, 67.4, 53.3, 37.9, 23.2 ppm. HRMS (ESI) for  $(C_{18}H_{19}NO_3) + H]^+$ : calcd 298.1443, found 298.1437  $[M + H]^+$ , 320.1254  $[M + Na]^+$ .

*N*-Acetyl tyrosine (*O*-*t*-butyl) *t*-butyl ester (3s). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 7.31$  (d, J = 8.4 Hz, 2 H, Ar*H*),  $\delta = 7.90$  (d, J = 8.4 Hz, 2 H, Ar*H*), 6.04 (br s, s, 1 H, N*H*), 4.74 (dd, J = 6.6 Hz, J = 5.7 Hz, 1 H,  $\alpha$ -C*H*), 3.09–3.02 (m, 2 H,  $\beta$ -C*H*), 2.02 (s, 3 H, C*H*<sub>3</sub>CO), 1.38 (s, 9 H, C(C*H*<sub>3</sub>)<sub>3</sub>), 1.40 (s, 9 H, C(C*H*<sub>3</sub>)<sub>3</sub>),ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 170.9$ , 169.3, 146.4, 131.1, 129.9, 124.0, 90.8, 82.4, 53.6, 37.5, 28.8, 27.9, 23.2 ppm. HRMS (ESI) for [(C<sub>19</sub>H<sub>29</sub>NO<sub>4</sub>] + H)<sup>+</sup> : calcd 336.2175, found 336.2133 [M + H]<sup>+</sup>, 358.1987 [M + Na]<sup>+</sup>.

*N*-Acetyl glutamic acid (*O-t*-butyl) methyl ester (3t): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 6.34$  (d, J = 7.5 Hz, 1 H, NH), 4.74 (dt, J = 8.0 Hz, J = 5.1 Hz, 1 H, α-*CH*), 3.67 (s, 3H, OCH<sub>3</sub>), 2.35–2.15 (m, 2 H, β-CH<sub>2</sub>), 2.05 (ddd, J = 14.1 Hz, J = 7.3Hz, J = 2.2 Hz, 1H, γ-CH), 1.95 (s, 3 H, CH<sub>3</sub>CO), 1.87 (ddd, J = 14.1 Hz, J = 6.1Hz, J = 1.3 Hz, 1H, γ-CH), 1.37 (s, 9 H, C(CH<sub>3</sub>)<sub>3</sub>) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 172.6$ , 172.2, 170.0, 80.8, 52.4, 51.8, 31.4, 28.0, 27.2, 23.0 ppm. HRMS (ESI) for [(C<sub>12</sub>H<sub>21</sub>NO<sub>5</sub>] + Na)<sup>+</sup>: calcd. 282.1317, found 282,1307 [M + Na]<sup>+</sup>.

*N*-Acetyl lysine (*N*-Boc) methyl ester (**3**u): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 6.48$  (d, J = 7.5 Hz, 1 H, *NH*), 4.73 (m, 1 H, N*H*), 4.50 (dd, J = 12.6 Hz, J = 7.5 Hz, 1 H,  $\alpha$ -C*H*), 3.67 (s, 3H, OC*H*<sub>3</sub>), 3.04- 2.99 (m, 2 H,  $\epsilon$ -C*H*<sub>2</sub>), 1.96 (s, 3 H, C*H*<sub>3</sub>CO), 1.75 (m, 1H,  $\beta$ -C*H*), 1.58 (m, 1H,  $\beta$ -C*H*),

1.44-1.27 (m, 4H,  $\gamma$ -CH<sub>2</sub> +  $\delta$ -CH<sub>2</sub>), 1.36 (s, 9 H, C(CH<sub>3</sub>)<sub>3</sub>) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$ = 172.1, 169.1, 155.2, 78.1, 51.3, 51.1, 38.9, 30.8, 28.6, 27.4, 21.9, 21.4 ppm. HRMS (ESI) for [(C<sub>14</sub>H<sub>26</sub>N<sub>2</sub>O<sub>5</sub>] + H)<sup>+</sup> : calcd. 303.1920, found 303.1904 [M + H]<sup>+</sup>, 325.1737 [M + Na]<sup>+</sup>.



<sup>1</sup>H NMR spectra (1q-1u)







Sample 1r: N-(9-Fluorenylmethoxycarbonyl) phenyl alanine benzyl ester





Sample 1s: N-(9-Fluorenylmethoxycarbonyl) tyrosine (O-tert-butyl) t-butyl ester

ΗŇ



Sample 1t: *N*-(9-Fluorenylmethoxycarbonyl) glutamic acid (*O*-tert-butyl) methyl ester

































# Sample 3k: N-Acetyl valine methyl ester









Sample 30 (two rotamers): N-Acetyl N-methyl valine methyl ester





Sample 3p (two rotamers): N-Acetyl N-methyl isoleucine methyl ester















# <sup>13</sup> C NMR spectra (1q-1u)

Sample 1q: N-(9-Fluorenylmethoxycarbonyl) glycine t-butyl ester





Sample 1r: N-(9-Fluorenylmethoxycarbonyl) phenylalanine benzyl ester





mdd 2 3 28.85 8 εe·Lε —— 6 82.74 50 92.88 — 8 26.95 \_\_\_\_ 2 8 81.13 8 100 110 120 70.01 - 129.06 - 129.06 28.421 130 99.45T -----140 74.641 150 9T.4ST TS.SST 160 170 69.071 ——

Sample 1s: N-(9-Fluorenylmethoxycarbonyl) tyrosine (O-tert-butyl) t-butyl ester















![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

# HRMS (ESI) (1q-1t)

![](_page_53_Picture_1.jpeg)

# Sample 1q: *N*-(9-Fluorenylmethoxycarbonyl) glycine t-butyl ester

| Com | nound | Table |
|-----|-------|-------|

| Compound Label      | RT    | Mass     | Abund | Formula      | Tgt Mass | Diff (ppm) | MFG Formula  | DB Formula   |
|---------------------|-------|----------|-------|--------------|----------|------------|--------------|--------------|
| Cpd 1: C21 H23 N O4 | 7,843 | 353,1625 | 70820 | C21 H23 N O4 | 353,1627 | -0,54      | C21 H23 N O4 | C21 H23 N O4 |

| Compound Label      | m/z,     | RT    | Algorithm       | Mass     |
|---------------------|----------|-------|-----------------|----------|
| Cpd 1: C21 H23 N O4 | 376,1518 | 7,843 | Find By Formula | 353,1625 |

![](_page_53_Figure_6.jpeg)

| m/z      | z | Abund    | Formula   | Ion     |
|----------|---|----------|-----------|---------|
| 376,1518 | 1 | 70819,95 | C21H23NO4 | (M+Na)+ |
| 377,1546 | 1 | 16965,1  | C21H23NO4 | (M+Na)+ |
| 378,1576 | 1 | 2795,57  | C21H23NO4 | (M+Na)+ |
| 379,1629 | 1 | 509,69   | C21H23NO4 | (M+Na)+ |

# Sample 1r: N-Fmoc phenylalanine benzyl ester

![](_page_54_Picture_1.jpeg)

#### Compound Table

|                     |       |          |       |              | Tgt     | Diff  |              |              |
|---------------------|-------|----------|-------|--------------|---------|-------|--------------|--------------|
| Compound Label      | RT    | Mass     | Abund | Formula      | Mass    | (ppm) | MFG Formula  | DB Formula   |
| Cpd 1: C31 H27 N O4 | 9,116 | 477,1936 | 9459  | C31 H27 N O4 | 477,194 | -0,88 | C31 H27 N O4 | C31 H27 N O4 |

![](_page_54_Figure_4.jpeg)

|  | m/z      | z | Abund   | Formula   | Ion     |  |  |  |  |
|--|----------|---|---------|-----------|---------|--|--|--|--|
|  | 478,2043 | 1 | 152,58  | C31H27NO4 | (M+H)+  |  |  |  |  |
|  | 500,1829 | 1 | 9459,41 | C31H27NO4 | (M+Na)+ |  |  |  |  |
|  | 501,1856 | 1 | 3309,26 | C31H27NO4 | (M+Na)+ |  |  |  |  |
|  | 502,1894 | 1 | 678,8   | C31H27NO4 | (M+Na)+ |  |  |  |  |

![](_page_55_Picture_0.jpeg)

# Sample 1s: N-Fmoc tyrosine (Otbutyl) tert butyl ester

#### **Compound Table**

| Compound Label      | RT     | Mass     | Abund  | Formula      | Tgt<br>Mass | Diff<br>(nnm) | MFG Formula  | DB Formula   |
|---------------------|--------|----------|--------|--------------|-------------|---------------|--------------|--------------|
| Cpd 1: C32 H37 N O5 | 10,448 | 515,2675 | 120636 | C32 H37 N O5 | 515,2672    | 0,66          | C32 H37 N O5 | C32 H37 N O5 |

| <b>Compound Label</b> | m/z     | RT     | Algorithm       | Mass     |
|-----------------------|---------|--------|-----------------|----------|
| Cpd 1: C32 H37 N      | 538,257 | 10,448 | Find By Formula | 515,2675 |
| 05                    |         |        |                 |          |

![](_page_55_Figure_5.jpeg)

| m/z |          | z | Abund    | Formula   | Ion     |
|-----|----------|---|----------|-----------|---------|
|     | 516,2664 | 1 | 408,93   | C32H37NO5 | (M+H)+  |
|     | 517,2693 | 1 | 138,79   | C32H37NO5 | (M+H)+  |
|     | 538,257  | 1 | 120635,8 | C32H37NO5 | (M+Na)+ |
|     | 539,2596 | 1 | 41841,45 | C32H37NO5 | (M+Na)+ |
|     | 540,2624 | 1 | 8468,1   | C32H37NO5 | (M+Na)+ |
|     | 541,2688 | 1 | 1445,46  | C32H37NO5 | (M+Na)+ |

# 

# Sample 1t: *N*-(9-Fluorenylmethoxycarbonyl) Glutamic acid (O-tert-butyl) methyl ester

| Compound Table      |      |          |        |         |          |       |              |         |
|---------------------|------|----------|--------|---------|----------|-------|--------------|---------|
|                     |      |          |        |         |          | Diff  |              | DB      |
| Compound Label      | RT   | Mass     | Abund  | Formula | Tgt Mass | (ppm) | MFG Formula  | Formula |
| Cpd 1: C25 H29 N O6 | 9,72 | 439,1998 | 312258 | C25 H29 | 439,1995 | 0,66  | C25 H29 N O6 | C25 H29 |
| *                   |      |          |        | N 06    | -        |       |              | N 06    |

| Compound Label      | m/z      | RT   | Algorithm       | Mass     |
|---------------------|----------|------|-----------------|----------|
| Cpd 1: C25 H29 N O6 | 462,1891 | 9,72 | Find By Formula | 439,1998 |

![](_page_56_Figure_4.jpeg)

| Pio opeccium |   |           |           |         |
|--------------|---|-----------|-----------|---------|
| m/z          | z | Abund     | Formula   | Ion     |
| 440,2135     | 1 | 77,61     | C25H29NO6 | (M+H)+  |
| 462,1891     | 1 | 312257,66 | C25H29NO6 | (M+Na)+ |
| 463,192      | 1 | 79635,58  | C25H29NO6 | (M+Na)+ |
| 464,194      | 1 | 13154,34  | C25H29NO6 | (M+Na)+ |
| 465,1969     | 1 | 1764,08   | C25H29NO6 | (M+Na)+ |
| 466,2004     | 1 | 267,16    | C25H29NO6 | (M+Na)+ |

![](_page_57_Picture_0.jpeg)

K

# Sample 1u: N-Fmoc Lysine (N-Boc) methyl ester

| Compound Table | 9 |
|----------------|---|
|----------------|---|

|                      | DT   |          |       |               | Tgt      | Diff  |               |               |
|----------------------|------|----------|-------|---------------|----------|-------|---------------|---------------|
| Compound Label       | RT   | Mass     | Abund | Formula       | Mass     | (ppm) | MFG Formula   | DB Formula    |
| Cpd 1: C27 H34 N2 O6 | 8,04 | 482,2412 | 51924 | C27 H34 N2 O6 | 482,2417 | -1,08 | C27 H34 N2 O6 | C27 H34 N2 O6 |

| Compound Label       | m/z,     | RT   | Algorithm       | Mass     |
|----------------------|----------|------|-----------------|----------|
| Cpd 1: C27 H34 N2 O6 | 505,2306 | 8,04 | Find By Formula | 482,2412 |
|                      |          |      |                 |          |

![](_page_57_Figure_5.jpeg)

| m/z      | z | Abund    | Formula    | Ion     |
|----------|---|----------|------------|---------|
| 483,2484 | 1 | 705,98   | C27H34N2O6 | (M+H)+  |
| 484,2512 | 1 | 232,07   | C27H34N2O6 | (M+H)+  |
| 485,2538 | 1 | 69,71    | C27H34N2O6 | (M+H)+  |
| 505,2306 | 1 | 51923,8  | C27H34N2O6 | (M+Na)+ |
| 506,2331 | 1 | 14876,35 | C27H34N2O6 | (M+Na)+ |
| 507,2357 | 1 | 2976,79  | C27H34N2O6 | (M+Na)+ |
| 508,2404 | 1 | 419,34   | C27H34N2O6 | (M+Na)+ |

# HRMS (ESI) (3j-3u)

# Sample 3j: *N*-Acetyl alanine methyl ester

**Compound Table** 

| Compound Label     | RT    | Mass     | Abund | Formula     | Tgt Mass | Diff (ppm) | MFG Formula | DB Formula  |
|--------------------|-------|----------|-------|-------------|----------|------------|-------------|-------------|
| Cpd 1: C6 H11 N O3 | 1,094 | 145,0736 | 399   | C6 H11 N O3 | 145,0739 | -2,01      | C6 H11 N O3 | C6 H11 N O3 |

| Compound Label     | m/z     | RT    | Algorithm       | Mass     |
|--------------------|---------|-------|-----------------|----------|
| Cpd 1: C6 H11 N O3 | 168,063 | 1,094 | Find By Formula | 145,0736 |
|                    |         |       |                 |          |

![](_page_58_Figure_6.jpeg)

| m/z      | z | Abund  | Formula  | Ion     |
|----------|---|--------|----------|---------|
| 168,063  | 1 | 399,23 | C6H11NO3 | (M+Na)+ |
| 169,0642 | 1 | 44,76  | C6H11NO3 | (M+Na)+ |

# Sample 31: N-Acetyl leucine methyl ester

![](_page_59_Picture_1.jpeg)

| Compound Table     |       |          |        |             |          |            |             | -           |
|--------------------|-------|----------|--------|-------------|----------|------------|-------------|-------------|
|                    |       |          |        |             |          |            |             |             |
| Compound Label     | RT    | Mass     | Abund  | Formula     | Tgt Mass | Diff (ppm) | MFG Formula | DB Formula  |
| Cpd 1: C9 H17 N O3 | 0,686 | 187,1211 | 809445 | C9 H17 N O3 | 187,1208 | 1,2        | C9 H17 N O3 | C9 H17 N O3 |

![](_page_59_Figure_3.jpeg)

| MS Spectrum Peak List |   |           |          |         |
|-----------------------|---|-----------|----------|---------|
| m/z                   | z | Abund     | Formula  | Ion     |
| 210,1103              | 1 | 809445,44 | C9H17NO3 | (M+Na)+ |
| 211,1133              | 1 | 75166,33  | C9H17NO3 | (M+Na)+ |
| 212,1156              | 1 | 9144,75   | C9H17NO3 | (M+Na)+ |
| 213,1172              | 1 | 1069,12   | C9H17NO3 | (M+Na)+ |

# Sample 3m: N-Acetyl isoleucine methyl ester

![](_page_60_Picture_1.jpeg)

| <b>Compound Table</b> |       |          |       |             |          |            |             |             |
|-----------------------|-------|----------|-------|-------------|----------|------------|-------------|-------------|
|                       |       |          |       |             |          |            |             |             |
| Compound Label        | RT    | Mass     | Abund | Formula     | Tgt Mass | Diff (ppm) | MFG Formula | DB Formula  |
| Cpd 1: C9 H17 N O3    | 3,261 | 187,1208 | 9107  | C9 H17 N O3 | 187,1208 | -0,46      | C9 H17 N O3 | C9 H17 N O3 |

| Compound Label     | m/z      | RT    | Algorithm       | Mass     |
|--------------------|----------|-------|-----------------|----------|
| Cpd 1: C9 H17 N O3 | 188,1279 | 3,261 | Find By Formula | 187,1208 |

![](_page_60_Figure_4.jpeg)

| MS Spectrum Peak List |   |         |          |         |  |  |  |  |  |  |
|-----------------------|---|---------|----------|---------|--|--|--|--|--|--|
| m/z                   | z | Abund   | Formula  | Ion     |  |  |  |  |  |  |
| 188,1279              | 1 | 9107,47 | C9H17NO3 | (M+H)+  |  |  |  |  |  |  |
| 189,1313              | 1 | 1112,44 | C9H17NO3 | (M+H)+  |  |  |  |  |  |  |
| 190,1322              | 1 | 147,65  | C9H17NO3 | (M+H)+  |  |  |  |  |  |  |
| 210,1099              | 1 | 8663,41 | C9H17NO3 | (M+Na)+ |  |  |  |  |  |  |
| 211,1133              | 1 | 994,68  | C9H17NO3 | (M+Na)+ |  |  |  |  |  |  |
| 212,1178              | 1 | 942,35  | C9H17NO3 | (M+Na)+ |  |  |  |  |  |  |

# Sample 3n: N-Acetyl phenyl alanine methyl ester

![](_page_61_Picture_1.jpeg)

(M+Na)+

| <b>Compound Table</b> |       |          |       |              |          |            |                    |              |
|-----------------------|-------|----------|-------|--------------|----------|------------|--------------------|--------------|
|                       |       |          |       |              |          |            |                    |              |
| Compound Label        | RT    | Mass     | Abund | Formula      | Tgt Mass | Diff (ppm) | <b>MFG Formula</b> | DB Formula   |
| Cpd 1: C12 H15 N O3   | 3,859 | 221,1049 | 13788 | C12 H15 N O3 | 221,1052 | -1,51      | C12 H15 N O3       | C12 H15 N O3 |

| Compound Label      | m/z      | RT    | Algorithm       | Mass     |
|---------------------|----------|-------|-----------------|----------|
| Cpd 1: C12 H15 N O3 | 244,0941 | 3,859 | Find By Formula | 221,1049 |

![](_page_61_Figure_4.jpeg)

183,8 C12H15NO3

#### MS Spectrum Peak List m/z z Abund Formula Ion 1 13787,94 C12H15NO3 244,0941 (M+Na)+ 245,0975 1 1850,58 C12H15NO3 (M+Na)+

1

246,0998

# Sample 3q: N-Acetyl glycine t-butyl ester

![](_page_62_Picture_1.jpeg)

| RT    | Mass            | Abund                    | Formula                             | Tgt Mass                                                | Diff (ppm)                                                                | MFG Formula                                                                                | DB Formula                                                                                                         |
|-------|-----------------|--------------------------|-------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 5,029 | 173,1051        | 5929                     | C8 H15 N O3                         | 173,1052                                                | -0,69                                                                     | C8 H15 N O3                                                                                | C8 H15 N O3                                                                                                        |
|       | <b>RT</b> 5,029 | RT Mass   5,029 173,1051 | RT Mass Abund   5,029 173,1051 5929 | RT Mass Abund Formula   5,029 173,1051 5929 C8 H15 N O3 | RT Mass Abund Formula Tgt Mass   5,029 173,1051 5929 C8 H15 N O3 173,1052 | RT Mass Abund Formula Tgt Mass Diff (ppm)   5,029 173,1051 5929 C8 H15 N O3 173,1052 -0,69 | RT Mass Abund Formula Tgt Mass Diff (ppm) MFG Formula   5,029 173,1051 5929 C8 H15 N O3 173,1052 -0,69 C8 H15 N O3 |

| Compound Label     | m/z      | RT    | Algorithm       | Mass     |
|--------------------|----------|-------|-----------------|----------|
| Cpd 1: C8 H15 N O3 | 174,1122 | 5,029 | Find By Formula | 173,1051 |

![](_page_62_Figure_4.jpeg)

| m/z      | z | Abund   | Formula  | Ion     |  |  |  |  |  |
|----------|---|---------|----------|---------|--|--|--|--|--|
| 174,1122 | 1 | 5929,13 | C8H15NO3 | (M+H)+  |  |  |  |  |  |
| 175,1158 | 1 | 746,98  | C8H15NO3 | (M+H)+  |  |  |  |  |  |
| 176,1146 | 1 | 151,98  | C8H15NO3 | (M+H)+  |  |  |  |  |  |
| 196,0945 | 1 | 4083,82 | C8H15NO3 | (M+Na)+ |  |  |  |  |  |
| 197,0974 | 1 | 428,3   | C8H15NO3 | (M+Na)+ |  |  |  |  |  |

# Sample 3r: N-Acetyl phenylalanine benzyl ester

![](_page_63_Picture_1.jpeg)

| Co | ompound Table       |       |          |       |              |          |          |              |              |
|----|---------------------|-------|----------|-------|--------------|----------|----------|--------------|--------------|
|    |                     |       |          |       |              |          | Diff     |              |              |
|    | Compound Label      | RT    | Mass     | Abund | Formula      | Tgt Mass | (ppm)    | MFG Formula  | DB Formula   |
| (  | Cpd 1: C18 H19 N O3 | 6,458 | 297,1363 | 16184 | C18 H19 N O3 | 297,1365 | -0,76    | C18 H19 N O3 | C18 H19 N O3 |
|    | Compound Label      |       | m/z      | RT    | Algorithm    |          | Mass     |              |              |
|    | Cpd 1: C18 H19 N O3 | 3     | 320,1254 | 6,458 | Find By For  | nula     | 297,1363 |              |              |

![](_page_63_Figure_3.jpeg)

| m/z      | z | Abund    | Formula   | Ion     |
|----------|---|----------|-----------|---------|
| 298,1437 | 1 | 1319,84  | C18H19NO3 | (M+H)+  |
| 299,15   | 1 | 291,36   | C18H19NO3 | (M+H)+  |
| 320,1254 | 1 | 16183,91 | C18H19NO3 | (M+Na)+ |
| 321,1288 | 1 | 3248,39  | C18H19NO3 | (M+Na)+ |
| 322,1318 | 1 | 464,67   | C18H19NO3 | (M+Na)+ |

# Sample 3s: N-Acetyl tyrosine (O-t-butyl) t-butyl ester

![](_page_64_Picture_1.jpeg)

| <b>Compound Table</b> |       |          |       |              |          |       |              |              |
|-----------------------|-------|----------|-------|--------------|----------|-------|--------------|--------------|
|                       |       |          |       |              | Tgt      | Diff  |              |              |
| <b>Compound Label</b> | RT    | Mass     | Abund | Formula      | Mass     | (ppm) | MFG Formula  | DB Formula   |
| Cpd 1: C19 H29 N O4   | 7,134 | 335,2101 | 1463  | C19 H29 N O4 | 335,2097 | 1,44  | C19 H29 N O4 | C19 H29 N O4 |

![](_page_64_Figure_3.jpeg)

| m/z |          | z | Abund   | Formula   | Ion     |
|-----|----------|---|---------|-----------|---------|
|     | 336,2133 | 1 | 86,93   | C19H29NO4 | (M+H)+  |
|     | 358,1987 | 1 | 1463,28 | C19H29NO4 | (M+Na)+ |
|     | 359,2054 | 1 | 333,28  | C19H29NO4 | (M+Na)+ |
|     | 360,2119 | 1 | 72,39   | C19H29NO4 | (M+Na)+ |

# Sample 3t: N-Acetyl glutamic acid (O-t-butyl) methyl ester

![](_page_65_Figure_1.jpeg)

| Compound Table      |       |          |         |              |             |               |              |              |
|---------------------|-------|----------|---------|--------------|-------------|---------------|--------------|--------------|
| Compound Label      | RT    | Mass     | Abund   | Formula      | Tgt<br>Mass | Diff<br>(ppm) | MFG Formula  | DB Formula   |
|                     |       | 11400    | 7104114 | loinaia      | 11400       | (PP)          |              | 2210         |
| Cpd 1: C12 H21 N O5 | 4,215 | 259,1413 | 2038    | C12 H21 N O5 | 259,142     | -2,59         | C12 H21 N O5 | C12 H21 N O5 |

| Compound Label      | m/z      | RT    | Algorithm          | Mass     |
|---------------------|----------|-------|--------------------|----------|
| Cpd 1: C12 H21 N O5 | 282,1307 | 4,215 | Find By<br>Formula | 259,1413 |

![](_page_65_Figure_4.jpeg)

| m/z |          | z | Abund   | Formula   | Ion     |
|-----|----------|---|---------|-----------|---------|
|     | 282,1307 | 1 | 2038,26 | C12H21NO5 | (M+Na)+ |
|     | 283,1332 | 1 | 299,12  | C12H21NO5 | (M+Na)+ |
|     | 284,1343 | 1 | 86,64   | C12H21NO5 | (M+Na)+ |

# Sample 3u: N-Acetyl Lysine (N-Boc) methyl ester

![](_page_66_Picture_1.jpeg)

| _Compound Table      |       |          |        |               |          |            |               |               |
|----------------------|-------|----------|--------|---------------|----------|------------|---------------|---------------|
|                      |       |          |        |               |          |            |               |               |
| Compound Label       | RT    | Mass     | Abund  | Formula       | Tgt Mass | Diff (ppm) | MFG Formula   | DB Formula    |
| Cpd 1: C14 H26 N2 O5 | 4,136 | 302,1845 | 906783 | C14 H26 N2 O5 | 302,1842 | 1          | C14 H26 N2 O5 | C14 H26 N2 O5 |

| Compound Label       | m/z      | RT    | Algorithm       | Mass     |
|----------------------|----------|-------|-----------------|----------|
| Cpd 1: C14 H26 N2 O5 | 325,1737 | 4,136 | Find By Formula | 302,1845 |

![](_page_66_Figure_4.jpeg)

| m/z      | z | Abund     | Formula    | Ion     |
|----------|---|-----------|------------|---------|
| 303,1904 | 1 | 3316,26   | C14H26N2O5 | (M+H)+  |
| 304,1956 | 1 | 449,96    | C14H26N2O5 | (M+H)+  |
| 305,1958 | 1 | 119,67    | C14H26N2O5 | (M+H)+  |
| 325,1737 | 1 | 906783,44 | C14H26N2O5 | (M+Na)+ |
| 326,1766 | 1 | 127692,35 | C14H26N2O5 | (M+Na)+ |
| 327,1784 | 1 | 16694,49  | C14H26N2O5 | (M+Na)+ |
| 328,1802 | 1 | 1730,82   | C14H26N2O5 | (M+Na)+ |