Electronic Supplementary Material

A turn-on fluorescent chemosensor based on acylhydrazone for sensing of Mg²⁺ with low detection limit

Jing-Han Hu*, Jian-Bin Li, You Sun, Peng-Xiang Pei, Jing Qi

E-mail: hujinghan62@163.com¹

College of Chemical and Biological Engineering, Lanzhou Jiaotong University,

Lanzhou, Gansu, 730070, P. R. China

E-mail: hujinghan62@163.com

Corresponding author: Prof. Jing-Han Hu, E-mail: hujinghan62@163.com, Tel: +86 931 18109460354

CONTENTS

1.	General methods	3
2.	Synthesis of sensor L	4
3.	¹ H NMR spectra of L.	5
4.	ESI-MS spectra of L	6
5.	The fluorescence emission of Mn (II)	7
6.	Absorption spectroscopy	8
7.	pH-dependence	9
8.	IR spectra of L and L-Mg ²⁺	10
9.	ESI-MS spectra of L-Mg ²⁺	11
10.	¹³ C NMR spectra of L	12
11.	Determination of the detection limit	13

1. General methods

Fresh double distilled water was used throughout the experiment. All other reagents and solvents were commercially available at analytical grade and were used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on a Mercury–400BB at 400 MHz spectra. ¹H chemical shifts are reported in ppm downfield from tetramethylsilane (TMS, δ scale) with the solvent resonances as internal standards. Photoluminescence spectra were performed on a Shimadzu RF–5301 fluorescence spectrophotometer. Melting points were measured on a X–4 digital melting-point apparatus. The infrared spectra were performed on a Digilab FTS–3000 FT–IR spectrophotometer.

All fluorescence spectroscopy was carried out just after the addition of perchlorate salts in DMSO/H₂O (7:3, v/v, 0.01 M HEPES, pH = 8.5) solution, while keeping the ligand concentration constant $(2.0 \times 10^{-5} \text{ M})$ on a Shimadzu RF-5301spectrometer. The solution of anions were prepared from the perchlorate salts (Fe³⁺, Hg²⁺, Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Pb²⁺, Zn²⁺, Cr³⁺ and Mg²⁺). The excitation wavelength was 378 nm

For ¹H NMR titrations, the sensor of stock solutions was prepared in DMSO– d_6 , the Mg²⁺ was prepared in distilled D₂O. Aliquots of the two solutions were mixed directly in NMR tubes

2. Synthesis of sensor L

3, 4, 5-trihydroxybenzoic acid (0.34 g, 2 mmol)and hydrazine hydrate(0.98 g, 2 mmol) were dissolved in 10 mL of ethanol under reflux for 4 h at 80°C. And add 2-hydroxy-1-napthaldehyde (0.344g, 2 mmol) into this solution. The solution was stirred under reflux for 8 h at 80°C. After cooling to room temperature, the yellow precipitate was filtered, washed three times with absolute ethanol, and recrystallized with absolute ethanol to get yellow powder product of L in 73.4% yield (m.p. 275-278°C). Anal. Calc. for $C_{18}H_{14}N_2O_5$: C, 63.90; H, 4.17; N, 8.28; O, 23.65 %. Found: C, 63.78; H, 4.06; N, 8.32; O, 23.84. ¹H NMR (DMSO-*d*₆, 400MHz) δ : 12.96 (s, 1H, -OH), 11.92 (s, 1H, -NH), 9.49 (s, 1H, Ar-OH), 9.29 (s, 2H, Ar-OH), 9.0 (s, 1H, -CH), 8.14 (d, 1H), 7.92 (t, 2H), 7.62 (t, 1H), 7.42 (t, 1H), 7.24 (d, 1H), 7.0 (s, 2H); ¹³C-NMR (DMSO-*d*₆, 100MHz) δ : 167.57, 162.84, 110.77, 142.42, 137.40, 136.63, 133.98, 132.79, 132.67, 128.49, 127.55, 125.37, 123.96, 113.60, 112.20. IR (KBr,) *v*: 1545 cm⁻¹ (CH=N), 1622 cm⁻¹ (C=O), 3391 cm⁻¹ (OH). ESI-MS m/z (M+H) ⁺: calcd. 339.09; found, 339.08.

Scheme S1 Synthesis of receptor L.

Fig. S1 ¹H NMR spectra of L.

4. ESI-MS spectra of L

Fig. S2 ESI-MS spectra of L.

5. The fluorescence emission of Mn (II)

Fig. S3 Fluorescence spectra response of L (2.0×10^{-5} M) in DMSO/H₂O (7:3, v/v, 0.01 M HEPES, pH = 8.5) upon addition of 20 equiv. of Mn²⁺ and Ca²⁺.

6. Absorption spectroscopy

Fig. S4 The absorption spectra of L (2×10^{-5} M) and in the presence of various metal ions.

7. pH-dependence

Fig. S5 pH-dependence of L (2.0×10^{-5} M) and L + Mg²⁺ in DMSO/H₂O (7:3, v/v, 0.01 M HEPES, pH = 8.5) system.

8. IR spectra of L and L-Mg²⁺

Fig. S6 IR spectra of L and L-Mg²⁺.

9. ESI-MS spectra of L-Mg²⁺

Fig. S7 ESI-MS spectra of L-Mg²⁺.

10.¹³C NMR spectra of L

Fig. S8 ¹³C NMR spectra of L.

11. Determination of the detection limit

The limit of detection (LOD) of L for Mg^{2+} was obtained by $3S_B/S$, where S_B is the standard deviation of the blank measurements and S is the slope of the calibration curve.