Supporting Information

Synthesis, structure and reactivity of guanidinate rare earth metal bis(*o*-aminobenzyl) complexes

Feng Kong,^a Meng Li^a, Xigeng Zhou^a and Lixin Zhang^{a*}

Contents

NMR spectra of all complexes (Except for 2c, 3c, 4c and 5c) (Page 2-15)

NMR spectra of representative PIP (Page 16-17)

GPC curves of PIP obtained by complex $2a/[Ph_3C][B(C_6F_5)_4]$ binary system (Page 18)

Molecular structure of 3b-d, 4c, 4d, 5c and 5d (Page 19-23)

Cryatallographic data and structure refinement details of 1, 3b-d, 4c, 4d, 5c and 5d

(Page 24-25)

Figure S1. ¹H NMR spectrum of **1** obtained in $CDCI_3$ at room temperature.

Figure S2. ¹³C NMR spectrum of 1 obtained in $CDCl_3$ at room temperature.

Figure S3. ¹H NMR spectrum of **1** obtained in C_6D_6 at room temperature.

Figure S4. ^{13}C NMR spectrum of 1 obtained in C_6D_6 at room temperature.

Figure S5. ¹H NMR spectrum of **2a** obtained in C₆D₆ at room temperature.

Figure S6. ¹³C NMR spectrum of 2a obtained in C₆D₆ at room temperature.

Figure S7. ¹H NMR spectrum of **2b** obtained in C_6D_6 at room temperature.

Figure S8. ¹³C NMR spectrum of **2b** obtained in C_6D_6 at room temperature.

Figure S9. ¹H NMR spectrum of 2d obtained in C_6D_6 at room temperature.

Figure S10. ¹³C NMR spectrum of 2d obtained in C_6D_6 at room temperature.

Figure S11. ¹H NMR spectrum of **3a** obtained in C_6D_6 at room temperature.

Figure S12. ¹³C NMR spectrum of **3a** obtained in C_6D_6 at room temperature.

Figure S13. ¹H NMR spectrum of **3b** obtained in C_6D_6 at room temperature.

Figure S14. ^{13}C NMR spectrum of **3b** obtained in C_6D_6 at room temperature.

Figure S15. ¹H NMR spectrum of **3d** obtained in C_6D_6 at room temperature.

Figure S16. ¹³C NMR spectrum of **3d** obtained in C_6D_6 at room temperature.

Figure S17. ¹H NMR spectrum of 4a obtained in C_6D_6 at room temperature.

Figure S18. ¹H NMR spectrum of **4a** obtained in C_6D_6 at room temperature.

Figure S19. ¹H NMR spectrum of **4b** obtained in C₆D₆ at room temperature.

Figure S20. 13 C NMR spectrum of 4b obtained in C₆D₆ at room temperature.

Figure S21. ¹H NMR spectrum of **4d** obtained in C_6D_6 at room temperature.

Figure S22. ¹³C NMR spectrum of **4d** obtained in C_6D_6 at room temperature.

Figure S23. ¹H NMR spectrum of **5a** obtained in C_6D_6 at room temperature.

Figure S24. 13 C NMR spectrum of 5a obtained in C₆D₆ at room temperature.

Figure S25. ¹H NMR spectrum of **5b** obtained in C₆D₆ at room temperature.

Figure S26. ¹³C NMR spectrum of **5b** obtained in C_6D_6 at room temperature.

Figure S27. ¹H NMR spectrum of **5d** obtained in C_6D_6 at room temperature.

Figure S28. 13 C NMR spectrum of 5d obtained in C₆D₆ at room temperature.

Figure S29. ¹H NMR spectrum of PIP obtained by complex $2a/[Ph_3C][B(C_6F_5)_4]$ binary system at 25 °C (Table 1, Entry 1)

Figure S30. ^{13}C NMR spectrum of PIP obtained by complex $2a/[Ph_3C][B(C_6F_5)_4]$ binary system at 25 °C (Table 1, Entry 1)

Figure S31. ¹H NMR spectrum of PIP obtained by complex $2a/[Ph_3C][B(C_6F_5)_4]$ binary system at -20 °C (Table 1, Entry 10)

Figure S32. ¹³C NMR spectrum of PIP obtained by complex $2a/[Ph_3C][B(C_6F_5)_4]$ binary system at -20 °C (Table 1, Entry 10)

Figure S33. GPC curves of the PIP obtained by the complex **2a** at 25 °C (Table 1, Entries 1 and 5-8).

Figure S34. GPC curves of the PIP obtained by the complex 2a at -20 °C (Table 1, Entries 1 and 10-14).

Figure S35. Molecular structure of complex **3b** with thermal ellipsoids at 30% probability. 2,6-Diisopropylphenyl groups of guanidinate ligand and all of the hydrogen atoms are omitted for clarity. Selected bond distances(Å) and angles(°): La(1)-O(4) 2.404(3), N(1)-C(1) 1.347(4), La(1)-O(2) 2.419(3), N(2)-C(1) 1.340(4), La(1)-O(3) 2.447(2), N(3)-C(1) 1.375(4), La(1)-O(1) 2.478(2), O(1)-C(50) 1.237(4), La(1)-O(3A) 2.803(3), O(3A)-C(50) 1.272(4), La(1)-N(1) 2.496(3), O(2)-C(40) 1.256(5), La(1)-N(2) 2.500(2), O(4A)-C(40) 1.260(5); O(4)-La(1)-O(2) 137.40(9), O(4)-La(1)-O(3) 74.65(9), O(2)-La(1)-O(3) 77.83(9), O(4)-La(1)-O(1) 84.07(10), O(2)-La(1)-O(1) 90.10(10), N(1)-La(1)-N(2) 52.83(8), N(2)-C(1)-N(1) 111.6(3), O(1)-C(50)-O(3A) 120.4(3), O(2)-C(40)-O(4A) 123.0(3).

Figure S36. Molecular structure of complex **3c** with thermal ellipsoids at 30% probability. 2,6-Diisopropylphenyl groups of guanidinate ligand and all of the hydrogen atoms are omitted for clarity. Selected bond distances(Å) and angles(°): Dy(1)-O(1) 2.300(3), N(1)-C(1) 1.341(5), Dy(1)-O(2) 2.288(3), N(2)-C(1) 1.329(5), Dy(1)-O(3) 2.334(3), N(3)-C(1) 1.384(5), Dy(1)-O(4) 2.744(3), O(1A)-C(40) 1.268(5), Dy(1)-O(4A) 2.271(3), O(2)-C(40) 1.257(5), Dy(1)-N(2) 2.333(3), O(3)-C(50) 1.231(5), Dy(1)-N(1) 2.372(3), O(4)-C(50) 1.285(5); O(2)-Dy(1)-O(1) 141.18(10), O(4A)-Dy(1)-O(4) 84.93(9), O(4A)-Dy(1)-O(2) 82.46(10), O(4A)-Dy(1)-O(1)

76.87(10), O(2)-Dy(1)-O(3) 85.73(11), N(2)-Dy(1)-N(1) 55.91(11), N(2)-C(1)-N(1) 111.4(3), O(2)-C(40)-O(1A) 123.8(4), O(3)-C(50)-O(4) 120.2(4).

Figure S37. Molecular structure of complex **3d** with thermal ellipsoids at 30% probability. 2,6-Diisopropylphenyl groups of guanidinate ligand and all of the hydrogen atoms are omitted for clarity. Selected bond distances(Å) and angles(°): Lu(1)-O(2A) 2.205(4), N(1)-C(1) 1.287(9), Lu(1)-O(3) 2.234(5), N(2)-C(1) 1.329(9), Lu(1)-O(4) 2.238(4), N(3)-C(1) 1.401(8), Lu(1)-O(1) 2.268(5), O(1)-C(40) 1.222(9), Lu(1)-O(2) 2.762(5), O(2)-C(40) 1.309(8), Lu(1)-N(2) 2.294(5), O(3)-C(50A) 1.273(8), Lu(1)-N(1) 2.318(5), O(4)-C(50) 1.246(9); O(3)-Lu(1)-O(4) 140.51(17), O(2A)-Lu(1)-O(2) 85.33(16), O(2A)-Lu(1)-O(1) 135.47(18), O(4)-Lu(1)-O(1) 84.83(19), O(1)-Lu(1)-O(2) 50.18(15), N(2)-Lu(1)-N(1) 55.8(2), N(1)-C(1)-N(2) 111.1(6), O(1)-C(40)-O(2) 118.8(6), O(4)-C(50)-O(3A) 122.8(6).

Figure S38. Molecular structure of complex **4c** with thermal ellipsoids at 30% probability. 2,6-Diisopropylphenyl groups of guanidinate ligand and all of the hydrogen atoms are omitted for clarity. Selected bond distances(Å) and angles(°): Dy(1)-N(2) 2.321(3), Dy(2)-S(4)

2.7896(11), Dy(1)-N(1) 2.327(3), Dy(2)-S(1) 2.8070(11), Dy(1)-S(1) 2.7915(11), Dy(2)-S(2) 2.8071(11), Dy(1)-S(2) 2.7980(11), N(1)-C(1) 1.363(5), Dy(1)-S(4) 2.8069(11), N(2)-C(1) 1.354(5), Dy(1)-S(3) 2.8422(11), N(3)-C(1) 1.363(5), Dy(2)-N(5) 2.323(3), N(4)-C(40) 1.340(5), Dy(2)-N(4) 2.348(3), N(5)-C(40) 1.374(5), Dy(2)-S(3) 2.7743(11), N(6)-C(40) 1.355(5); N(2)-Dy(1)-N(1) 56.80(11), S(1)-Dy(1)-S(2) 69.39(3), S(2)-Dy(1)-S(4) 106.14(3), N(5)-Dy(2)-N(4) 56.73(11), S(1)-Dy(2)-S(2) 69.04(3), S(4)-Dy(2)-S(2) 106.37(3), Dy(1)-S(1)-Dy(2) 73.78(3), Dy(1)-S(2)-Dy(2) 73.68(3), Dy(2)-S(3)-Dy(1) 73.49(3), Dy(2)-S(4)-Dy(1) 73.81(3), N(2)-C(1)-N(1) 108.9(3), N(4)-C(40)-N(5) 109.7(4).

Figure S39. Molecular structure of complex **4d** with thermal ellipsoids at 30% probability. 2,6-Diisopropylphenyl groups of guanidinate ligand and all of the hydrogen atoms are omitted for clarity. Selected bond distances(Å) and angles(°): Lu(1)-N(2) 2.251(3), Lu(2)-S(2) 2.7483(11), Lu(1)-N(1) 2.268(3), Lu(2)-S(1) 2.7722(11), Lu(1)-S(1) 2.6988(11), Lu(2)-S(3) 2.7792(11), Lu(1)-S(3) 2.7180(11), N(1)-C(1) 1.380(5), Lu(1)-S(2) 2.7612(11), N(2)-C(1) 1.398(5), Lu(1)-S(4) 2.7677(11), N(3)-C(1) 1.310(5), Lu(2)-N(4) 2.256(3), N(4)-C(40) 1.374(5), Lu(2)-N(5) 2.287(3), N(5)-C(40) 1.369(5), Lu(2)-S(4) 2.7470(12), N(6)-C(40) 1.344(5); N(2)-Lu(1)-N(1) 58.53(12), S(1)-Lu(1)-S(3) 109.55(3), S(1)-Lu(1)-S(2) 69.36(3), N(4)-Lu(2)-N(5) 58.18(12), S(4)-Lu(2)-S(2) 108.52(3), S(4)-Lu(2)-S(1) 69.34(3), Lu(1)-S(1)-Lu(2) 72.57(3), Lu(2)-S(2)-Lu(1) 72.00(3), Lu(1)-S(3)-Lu(2) 72.18(3), Lu(2)-S(4)-Lu(1) 71.92(3), N(1)-C(1)-N(2) 105.3(3), N(5)-C(40)-N(4) 107.3(4).

Figure S40. Molecular structure of complex **5c** with thermal ellipsoids at 30% probability. All of the hydrogen atoms are omitted for clarity. Selected bond distances(Å) and angles(\circ): Dy(1)-N(2/2A) 2.335(5), Dy(1)-N(3/3A) 2.430(5), Dy(1)-S(1/1A) 2.7221(19), S(1)-C(21) 1.752(6), N(2/2A)-C(1) 1.359(7), N(1)-C(1) 1.365(12), N(3)-C(21) 1.270(8); N(2)-Dy(1)-N(2A) 56.9(2), N(2A)-C(1)-N(2) 109.8(8), N(3)-Dy(1)-S(1) 60.37(12), N(3)-C(21)-S(1) 118.0(5), C(21)-S(1)-Dy(1) 78.2(2), C(21)-N(3)-Dy(1) 99.5(4).

Figure S41. Molecular structure of complex **5d** with thermal ellipsoids at 30% probability. All of the hydrogen atoms are omitted for clarity. Selected bond distances(Å) and angles(°): Lu(1)-N(3) 2.265(5), Lu(1)-N(2) 2.286(5), Lu(1)-N(4) 2.321(5), Lu(1)-N(5) 2.350(5), Lu(1)-S(1) 2.6731(19), Lu(1)-S(2) 2.6828(18), S(1)-C(40) 1.726(6), S(2)-C(41) 1.722(6), N(1)-C(1) 1.397(8), N(4)-C(40) 1.293(8), N(5)-C(41) 1.307(7); N(3)-Lu(1)-N(2) 57.80(16), N(5)-Lu(1)-S(2) 61.90(11),

$$\begin{split} N(3)-Lu(1)-N(4) & 94.60(17), \ S(1)-Lu(1)-S(2) \ 130.36(6), \ N(2)-Lu(1)-N(4) \ 142.84(18), \ C(40)-S(1)-Lu(1) \ 78.0(2), \ N(3)-Lu(1)-N(5) \ 148.12(19), \ C(41)-S(2)-Lu(1) \ 78.8(2), \ N(2)-Lu(1)-N(5) \ 100.47(17), \ C(1)-N(2)-Lu(1) \ 95.2(3), \ N(4)-Lu(1)-N(5) \ 113.87(18), \ C(1)-N(3)-Lu(1) \ 95.0(3), \ N(3)-Lu(1)-S(1) \ 115.43(13), \ C(40)-N(4)-Lu(1) \ 101.1(4), \ N(2)-Lu(1)-S(1) \ 104.74(13), \ C(41)-N(5)-Lu(1) \ 100.6(4), \ N(4)-Lu(1)-S(1) \ 62.35(12), \ N(2)-C(1)-N(3) \ 112.1(5), \ N(5)-Lu(1)-S(1) \ 91.40(13), \ N(2)-C(1)-N(1) \ 124.9(5), \ N(3)-Lu(1)-S(2) \ 106.39(12), \ N(3)-C(1)-N(1) \ 123.0(5), \ N(2)-Lu(1)-S(2) \ 120.03(13), \ N(4)-C(40)-S(1) \ 118.4(5), \ N(4)-Lu(1)-S(2) \ 89.70(13), \ N(5)-C(41)-S(2) \ 117.9(5). \end{split}$$

	4	21		
	1	3b	<u>3c</u>	3d
Formula	$C_{39}H_{48}N_3$	$C_{59}H_{72}N_5O_4La$	$C_{59}H_{72}N_5O_4Dy$	$C_{59}H_{72}N_5O_4Lu$
Formula weight	558.80	1054.13	1077.71	1090.18
Temperature	293(2)	273(2)	273(2)	296(2)
(K)				
Wavelength(Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic
space group	P-1	P2(1)/n	P-1	P-1
$a(\text{\AA})$	10.323(8)	17.229(2)	13.052(3)	13.0131(13)
$b(\text{\AA})$	10.930(8)	16.7584(19)	16.105(3)	16.0451(16)
$c(\text{\AA})$	16.132(12)	20.095(2)	16.969(6)	16.917(3)
$\alpha(0)$	79.031(7)	90	103.980(3)	103.838(2)
$\beta^{(O)}$	82.038(9)	107.6720	104.552(3)	104.826(2)
$\gamma(O)$	82.388(9)	90	112.507(2)	112.459(2)
$V(Å^3)$	1759(2)	5528.3(11)	2953.3(13)	2922.6(6)
Ζ	2	4	2	2
D_c (g/cm ³)	1.055	1.267	1.212	1.239
μ (mm ⁻¹)	0.061	0.82	1.310	1.735
F(000)	606	2200	1118	1128
Crystal size	0.40x0.40x0.10	0.40x0.32x0.26	0.42x0.38x0.35	0.50x0.48x0.43
(mm^3)				
θ range (°)	1.295 to 25.050	1.37 to 25.05	1.339 to 25.05	1.483 to 25.049
h, k, l range	-6<=h<=12,	-20<=h<=20	-15<=h<=14	-15<=h<=15
-	-12<=k<=13,	-19<=k<=19	-19<=k<=19	-19<=k<=19
	-19<=]<=19	-14<=1<=23	-20<=l<=19	-20<=l<=13
Reflections	8582	26960	14407	17550
collected				
Reflections	6058	9767	10192	10217
unique	[R(int)=0.0235]	[R(int)=0.0259]	[R(int) = 0.0238]	[R(int) = 0.0305]
Completeness to	97.2 % (θ =	99.8 % (θ =	97.4 %(<i>θ</i> =	98.7 %(θ =
θ	25.05)	25.05)	25.05)	25.049)
Max. and min.	0.7455 and	0.8148 and	0.7456 and	0.7455 and
Transmission	0.6045	0.7347	0.4990	0.4760
Refinement	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-
method	squares on F ²			
Data / restraints	6058 / 0 / 388	9767 / 0 / 622	10192 / 0 / 634	10217 / 0 / 634
/ parameters				
Goodness-of-fit	1.047	1.051	0.983	1.032
on F^2				
Final R indices	$R_1 = 0.0618, wR_2$	$R_1 = 0.0379, wR_2$	$R_1 = 0.0349, wR_2$	$R_1 = 0.0468, wR_2$
$[I \ge 2\sigma(I)]$	= 0.1760	= 0.1046	= 0.0916	= 0.1399
R indices (all	$R_1 = 0.0877, wR_2$	$R_1 = 0.0549, wR_2$	$R_1 = 0.0454, wR_2$	$R_1 = 0.0587, wR_2$
data)	= 0.1995	= 0.1213	= 0.0940	= 0.1774
Largest diff.	0.508 and -0.264	0.906 and -0.462	1.004 and -0.697	1.524 and -1.852
peak and hole (e				
Å-3)				

Table S1. Crystal data and refinement details of complexes 1,3b-d

Table S2. Crystal data and refinement details of complexes 4c, 4d, 5c, 5d

	4c	4d	5c	5d
Formula	$C_{114}H_{144}N_{10}S_4D \\$	$C_{114}H_{144}N_{10}S_4L \\$	$C_{71}H_{82}N_7S_2Dy \\$	$C_{71}H_{82}N_7S_2Lu$
	y ₂	u ₂		
Formula weight	2107.63	2132.57	1260.06	1272.53
Temperature (K)	273(2)	273(2)	273(2)	293(2)
Wavelength(Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
space group	P2(1)/n	P-1	C2/c	P-1
a (Å)	15.4557(17)	14.1932(16)	13.114(3)	10.950(4)
b (Å)	23.843(3)	15.3802(18)	26.401(6)	14.310(5)
<i>c</i> (Å)	31.373(4)	30.149(4)	19.568(5)	22.145(7)
α (deg)	90	94.987(2)	90	106.075(4)
β (deg)	98.9200(10)	92.195(2)	104.312(3)	93.766(4)
γ (deg)	90	116.5510(10)	90	98.308(4)
$V(Å^3)$	11421(2)	5842.9(13)	6565(3)	3278.7(19)
Z	4	2	4	2
Dc (g/cm ³)	1 226	1 212	1 275	1 289
$\mu (\rm mm^{-1})$	1 419	1 798	1 247	1.615
F(000)	4376	2208	2620	1320
Crystal size (mm)	$0.32 \times 0.30 \times$	$0.36 \ge 0.30 \ge$	$0.40 \ge 0.35 \ge$	$0.33 \times 0.20 \times$
erystar size (mm)	0.52 x 0.50 x	0.25 x 0.20 x	0.10 x 0.55 x	0.18
A range (°)	1.08 to 25.05	1.49 to 25.05	1.54 to 25.05	1 50 to 25 05
h k lrange	$-18 \le h \le 16$	$-11 \le h \le 16$	-13 < =h < =15	$-12 \le h \le 12$
n, k, i iunge	-10 < h < 10 -28 < = k < = 27	-11 < h < 10 -18 < = k < = 18	-15 < 11 < 15 - 31 < = k < = 22 -	-12 < n < 12 -17 < = k < = 16
	-20 < K < 27 37 < -1 < -20	-10 < K < 10 35 < -1 < -35	31 < K < 22 = 32 < -1 < -32	17 < K < 10 17 < -1 < -26
Reflections	-57<-1<-29 56673	20365	15475	-1/<-1<-20 128/6
collected	50075	29303	15475	12040
Reflections	20182	20350	5809	10967
unique	[R(int)=0.0508]	[R(int)=0.0235]	[R(int)=0.0866]	[R(int)=0.02/10]
Completeness to A	[R(IIII) 0.0500] 99.8 %(A =	[R(IRt) 0.0255] 98.3 %(A =	[R(IIII) 0.0000] 99.7 % (A =	[R(IIII) 0.02+7] 94.8 % (A =
completeness to 0	25.05	25.05	25.05	25.05
Max and min	25.05) 0.7260 and	25.05) 0.6621 and	25.05) 0.7060 and	25.05
Transmission	0.7209 and 0.6505	0.0021 and	0.7000 and 0.6252	0.7398 and 0.6170
Definement	0.0393 Full motrix	0.3038 Full motrix	0.0333 Full motrix	0.01/9 Full matrix
method	Full-maulx	Full-maulx	Full-maultx	Full-mailix
method	reast-squares on Γ^2	reast-squares on Γ^2	least-squares on Σ^2	reast-squares of Γ^2
Data / mantus inta /	F ²	F ²	F ²	F^{2}
Data / restraints /	20182 / 12 /	20350/0/1195	5809/0/3/3	1096//0//42
parameters	1183	1 000	1.000	1.044
Goodness-of-fit	1.014	1.029	1.006	1.044
on F2	D 0.0400	D 0.0250	D 0.0500	D 0.0405
Final K indices	$K_1 = 0.0409,$	$R_1 = 0.0379,$	$K_1 = 0.07/83,$	$R_1 = 0.0405,$
$[I>2\sigma(I)]$	$wR_2 = 0.0770$	$wR_2 = 0.0959$	$wR_2 = 0.1827$	$wR_2 = 0.1294$
R indices (all	$R_1 = 0.0718,$	$R_1 = 0.0593,$	$R_1 = 0.0898,$	$R_1 = 0.0530,$
data)	$wR_2 = 0.0823$	$wR_2 = 0.1027$	$wR_2 = 0.1915$	$wR_2 = 0.1465$
Largest diff. peak	1.164 and -	1.088 and -	2.682 and -	1.392 and -
and hole (e Å ⁻³)	0.782	0.675	5.264	1.030