Supplementary Data

Biotransformation of dehydroepiandrosterone (DHEA) by environmental strains of filamentous fungi

Ewa Kozłowska,*^a Monika Urbaniak,^b Anna Kancelista,^c Monika Dymarska,^a Edyta Kostrzewa-Susłow,^a Łukasz Stępień^b and Tomasz Janeczko*^a

^aDepartment of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland. E-mail: e.a.kozlowska@gmail.com; janeczko13@interia.pl

^bDepartment of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.

^cDepartment of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland.

*Corresponding author: E-mail: e.a.kozlowska@gmail.com (Ewa Kozłowska); janeczko13@interia.pl (Tomasz Janeczko)

Content

Table S1. ¹³C NMR chemical shifts of products in CDCl₃ (recorded in CDCl3 113 MHz)

- Fig.S1. ¹H NMR spectral of androst-1,4-diene-3,17-dione (ADD) (CDCl₃, 600 MHz)
- Fig.S2. ¹³C NMR spectral of androst-1,4-diene-3,17-dione (ADD) (CDCl₃, 151 MHz)

Fig.S3. HSQC spectral of androst-1,4-diene-3,17-dione (ADD) (CDCl₃, 151 MHz)

Fig.S4. COSY spectral of androst-1,4-diene-3,17-dione (ADD) (CDCl₃, 151 MHz)

- Fig.S5. ¹H NMR spectral of 6β-hydroxyandrost-4-ene-3,17-dione (**6βOH-AD**) (CDCl₃, 600 MHz)
- Fig.S6. ¹³C NMR spectral of 6β-hydroxyandrost-4-ene-3,17-dione (**6βOH-AD**) (CDCl₃, 151 MHz)
- Fig.S7. HSQC spectral of 6β-hydroxyandrost-4-ene-3,17-dione (**6βOH-AD**) (CDCl₃, 151 MHz)
- Fig.S8. COSY spectral of 6β-hydroxyandrost-4-ene-3,17-dione (**6βOH-AD**) (CDCl₃, 151 MHz)
- Fig.S9. ¹H NMR spectral of 6β-hydroxyandrost-1,4-diene-3,17-dione (**6βOH-ADD**) (CDCl₃, 600 MHz)
- Fig.S10. ¹³C NMR spectral of 6β-hydroxyandrost-1,4-diene-3,17-dione (**6βOH-ADD**) (CDCl₃, 151 MHz)
- Fig.S11. HSQC spectral of 6β-hydroxyandrost-1,4-diene-3,17-dione (**6βOH-ADD**) (CDCl₃, 151 MHz)

- Fig.S12. COSY spectral of 6β-hydroxyandrost-1,4-diene-3,17-dione (**6βOH-ADD**) (CDCl₃, 151 MHz)
- Fig.S13. ¹H NMR spectral of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOH-lactone**) (CDCl₃, 600 MHz)
- Fig.S14. ¹³C NMR spectral of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOH-lactone**) (CDCl₃, 151 MHz)
- Fig.S15. HSQC spectral of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOH**lactone) (CDCl₃, 151 MHz)
- Fig.S16. COSY spectral of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOH**lactone) (CDCl₃, 151 MHz)
- Fig.S17. ¹H NMR spectral of 17a-oxa-D-homo-androst-4-ene-17-one (testololactone) (CDCl₃, 600 MHz)
- Fig.S18. ¹³C NMR spectral of 17a-oxa-D-homo-androst-4-ene-17-one (**testololactone**) (CDCl₃, 151 MHz)
- Fig.S19. HSQC spectral of 17a-oxa-D-homo-androst-4-ene-17-one (testololactone) (CDCl₃, 151 MHz)
- Fig.S20. COSY spectral of 17a-oxa-D-homo-androst-4-ene-17-one (testololactone) (CDCl₃, 151 MHz)
- Fig.S21. ¹H NMR spectral of 3β,7α-dihydroxyandrost-5-ene-17-one (7αOH-DHEA) (CDCl₃, 600 MHz)
- Fig.S22. ¹³C NMR spectral of 3β,7α-dihydroxyandrost-5-ene-17-one (**7αOH-DHEA**) (CDCl₃, 151 MHz)
- Fig.S23. HSQC spectral of 3β,7α-dihydroxyandrost-5-ene-17-one (7αOH-DHEA) (CDCl₃, 151 MHz)
- Fig.S24. COSY spectral of 3β,7α-dihydroxyandrost-5-ene-17-one (7αOH-DHEA) (CDCl₃, 151 MHz)
- Fig.S25. ¹H NMR spectral of androst-5-ene-3β,7α,17α-triol (**3β,7α,17α-triol**) (CDCl₃, 600 MHz)
- Fig.S26. ¹³C NMR spectral of androst-5-ene-3β,7α,17α-triol (**3β,7α,17α-triol**) (CDCl₃, 151 MHz)
- Fig.S27. HSQC spectral of androst-5-ene-3β,7α,17α-triol (**3β,7α,17α-triol**) (CDCl₃, 151 MHz)
- Fig.S28. COSY spectral of androst-5-ene-3β,7α,17α-triol (**3β,7α,17α-triol**) (CDCl₃, 151 MHz)
- Fig.S29. ¹H NMR spectral of 3β-hydroxyandrost-5-ene-7,17-dione (**70xo-DHEA**) (CDCl₃, 600 MHz)
- Fig.S30. ¹³C NMR spectral of 3β-hydroxyandrost-5-ene-7,17-dione (**7Oxo-DHEA**) (CDCl₃, 151 MHz)
- Fig.S31. HSQC spectral of 3β-hydroxyandrost-5-ene-7,17-dione (**7Oxo-DHEA**) (CDCl₃, 151 MHz)
- Fig.S32. COSY spectral of 3β-hydroxyandrost-5-ene-7,17-dione (**70xo-DHEA**) (CDCl₃, 151 MHz)

- Table S2. Intensity of fragments arising from degradation of compound androst-1,4-diene-3,17-dione (ADD)
- Fig.S33. GC-MS spectra of androst-1,4-diene-3,17-dione (ADD)
- Fig.S34. Enlarged GC-MS spectra of androst-1,4-diene-3,17-dione (ADD)
- Table S3. Intensity of fragments arising from degradation of compound 6β-hydroxyandrost-4-ene-3,17-dione (**6βOH-AD**)
- Fig.S35. GC-MS spectra of 6β-hydroxyandrost-4-ene-3,17-dione (6βOH-AD)
- Fig.S36. Enlarged GC-MS spectra of 6β-hydroxyandrost-4-ene-3,17-dione (6βOH-AD)
- Table S4. Intensity of fragments arising from degradation of compound 6β-hydroxyandrost-1,4-diene-3,17-dione (**6βOH-ADD**)
- Fig.S37. GC-MS spectra of 6β-hydroxyandrost-1,4-diene-3,17-dione (6βOH-ADD)
- Fig.S38. Enlarged GC-MS spectra of 6β-hydroxyandrost-1,4-diene-3,17-dione (6βOH-ADD)
- Table S5. Intensity of fragments arising from degradation of compound 3β-hydroxy-17aoxa-D-homo-androst-5-ene-17-one (**3βOH-lactone**)
- Fig.S39. GC-MS spectra of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOHlactone**)
- Fig.S40. Enlarged GC-MS spectra of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOH-lactone**)
- Table S6. Intensity of fragments arising from degradation of compound 17a-oxa-D-homoandrost-4-ene-17-one (**testololactone**)
- Fig.S41. GC-MS spectra of 17a-oxa-D-homo-androst-4-ene-17-one (testololactone)
- Fig.S42. Enlarged GC-MS spectra of 17a-oxa-D-homo-androst-4-ene-17-one (testololactone)
- Table S7. Intensity of fragments arising from degradation of compound 3β , 7α -dihydroxyandrost-5-ene-17-one (7α OH-DHEA)
- Fig.S43. GC-MS spectra of 3β,7α-dihydroxyandrost-5-ene-17-one (7αOH-DHEA)
- Fig.S44. Enlarged GC-MS spectra of 3β , 7α -dihydroxyandrost-5-ene-17-one (7α OH-DHEA)
- Table S8. Intensity of fragments arising from degradation of compound and rost-5-ene- 3β , 7α , 17α -triol (**3** β ,**7** α ,**17** α -**triol**)
- Fig.S45. GC-MS spectra of androst-5-ene-3β,7α,17α-triol (**3β,7α,17α-triol**)
- Fig.S46. Enlarged GC-MS spectra of androst-5-ene-3β,7α,17α-triol (**3β,7α,17α-triol**)
- Table S9. Intensity of fragments arising from degradation of compound 3β-hydroxyandrost-5ene-7,17-dione (**70xo-DHEA**)
- Fig.S47. GC-MS spectra of 3β-hydroxyandrost-5-ene-7,17-dione (7Oxo-DHEA)
- Fig.S48. Enlarged GC-MS spectra of 3β-hydroxyandrost-5-ene-7,17-dione (**7Oxo-DHEA**)

Atom]	Products					
numbe	AD	ADD	6βOH- AD	6βOH- ADD	Testolo - lactone	7αOH- DHEA	3β,7α,1 7a-triol	3βOH- lactone	70xo- DHEA
1	35.05	155.43	37.34	156.86	35.46	37.07	37.22	37.04	36.60
2	33.81	127.82	34.28	127.03	33.84	31.39	31.10	31.59	31.25
3	199.21	186.33	200.40	186.65	199.40	71.25	71.41	71.61	70.44
4	124.04	124.24	126.58	126.17	124.07	42.06	42.19	42.01	41.99
5	170.26	168.44	168.03	165.52	169.63	146.64	146.28	140.79	166.27
6	32.46	32.65	72.83	73.70	32.35	123.67	123.99	120.70	126.06
7	30.66	32.41	37.34	38.86	30.37	64.37	65.63	31.20	201.20
8	35.58	35.22	29.52	29.93	37.92	37.32	37.98	34.58	44.47
9	53.70	52.40	53.76	51.96	52.45	42.72	42.49	49.11	50.22
10	38.56	43.54	38.17	43.62	38.46	37.63	37.60	36.92	38.54
11	20.23	22.20	20.37	22.04	21.82	20.19	20.43	22.09	20.72
12	31.19	31.30	31.37	31.34	38.93	31.18	31.51	39.04	30.85
13	47.41	47.79	47.74	47.87	82.87	47.23	45.08	83.30	48.00
14	50.71	50.53	51.00	50.63	45.62	45.05	42.13	46.85	45.88
15	21.67	22.02	21.81	21.96	19.82	22.02	24.89	20.03	24.31
16	35.67	35.74	35.88	35.80	28.53	35.91	32.75	28.95	35.77
17	220.35	220.03	220.69	220.15	171.44	221.30	80.00	171.64	220.52
18	13.62	13.92	13.88	14.01	17.40	13.39	16.76	20.20	13.89
19	17.29	18.83	19.65	20.59	20.11	18.38	18.43	19.42	17.57

Table S1. ¹³C NMR chemical shifts of products in CDCl₃

Fig.S1. ¹H NMR spectral of androst-1,4-diene-3,17-dione (ADD) (CDCl₃, 600 MHz)

Fig.S2. ¹³C NMR spectral of androst-1,4-diene-3,17-dione (ADD) (CDCl₃, 151 MHz)

Fig.S3. HSQC spectral of androst-1,4-diene-3,17-dione (ADD) (CDCl₃, 151 MHz)

Fig.S4. COSY spectral of androst-1,4-diene-3,17-dione (ADD) (CDCl₃, 151 MHz)

Fig.S5. ¹H NMR spectral of 6β-hydroxyandrost-4-ene-3,17-dione (**6βOH-AD**) (CDCl₃, 600 MHz)

Fig.S6. ¹³C NMR spectral of 6β-hydro xyandrost-4-ene-3,17-dione (**6βOH-AD**) (CDCl₃, 151 MHz)

Fig.S8. COSY spectral of 6β-hydro xyandrost-4-ene-3,17-dione (**6βOH-AD**) (CDCl₃, 151 MHz)

Fig.S9. ¹H NMR spectral of 6β-hydroxyandrost-1,4-diene-3,17-dione (**6βOH-ADD**) (CDCl₃, 600 MHz)

Fig.S10. ¹³C NMR spectral of 6β-hydroxyandrost-1,4-diene-3,17-dione (**6βOH-ADD**) (CDCl₃, 151 MHz)

Fig.S11. HSQC spectral of 6β-hydroxyandrost-1,4-diene-3,17-dione (**6βOH-ADD**) (CDCl₃, 151 MHz)

Fig.S12. COSY spectral of 6β-hydroxyandrost-1,4-diene-3,17-dione (**6βOH-ADD**) (CDCl₃, 151 MHz)

Fig.S13. ¹H NMR spectral of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOH-lactone**) (CDCl₃, 600 MHz)

Fig.S14. ¹³C NMR spectral of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOH-lactone**) (CDCl₃, 151 MHz)

Fig.S15. HSQC spectral of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOHlactone**) (CDCl₃, 151 MHz)

Fig.S16. COSY spectral of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOHlactone**) (CDCl₃, 151 MHz)

Fig.S17. ¹H NMR spectral of 17a-oxa-D-homo-androst-4-ene-17-one (**testololactone**) (CDCl₃, 600 MHz)

Fig.S18. ¹³C NMR spectral of 17a-oxa-D-homo-androst-4-ene-17-one (**testololactone**) (CDCl₃, 151 MHz)

Fig.S19. HSQC spectral of 17a-oxa-D-homo-androst-4-ene-17-one (testololactone) (CDCl₃, 151 MHz)

Fig.S20. COSY spectral of 17a-oxa-D-homo-androst-4-ene-17-one (**testololactone**) (CDCl₃, 151 MHz)

Fig.S21. ¹H NMR spectral of 3β , 7α -dihydroxyandrost-5-ene-17-one (7α OH-DHEA) (CDCl₃, 600 MHz)

Fig.S22. ¹³C NMR spectral of 3β , 7α -dihydroxyandrost-5-ene-17-one (7α OH-DHEA) (CDCl₃, 151 MHz)

Fig.S24. COSY spectral of 3β , 7α -dihydroxyandrost-5-ene-17-one (7α OH-DHEA) (CDCl₃, 151 MHz)

Fig.S25. ¹H NMR spectral of androst-5-ene- 3β , 7α , 17α -triol (**3** β ,**7** α ,**17** α -triol) (CDCl₃, 600 MHz)

Fig.S26. ¹³C NMR spectral of and rost-5-ene-3 β ,7 α ,17 α -triol (**3\beta,7\alpha,17\alpha-triol**) (CDCl₃, 151 MHz)

Fig.S27. HSQC spectral of and rost-5-ene-3 β ,7 α ,17 α -triol (**3\beta,7\alpha,17\alpha-triol**) (CDCl₃, 151 MHz)

Fig.S28. COSY spectral of and rost-5-ene-3 β ,7 α ,17 α -triol (**3\beta,7\alpha,17\alpha-triol**) (CDCl₃, 151 MHz)

Fig.S29. ¹H NMR spectral of 3β -hydroxyandrost-5-ene-7,17-dione (**70xo-DHEA**) (CDCl₃, 600 MHz)

Fig.S30. ¹³C NMR spectral of 3β-hydroxyandrost-5-ene-7,17-dione (**70xo-DHEA**) (CDCl₃, 151 MHz)

Fig.S31. HSQC spectral of 3β-hydroxyandrost-5-ene-7,17-dione (**7Oxo-DHEA**) (CDCl₃, 151 MHz)

Fig.S32. COSY spectral of 3β-hydroxyandrost-5-ene-7,17-dione (**70xo-DHEA**) (CDCl₃, 151 MHz)

Table S2. Intensity of fragments arising from degradation of compound androst-1,4-diene-3,17-dione (ADD)

nr	Precursor	relative							
	ion (m/z)	abundance							
		[%]							
1	122,10	100,00							
2	121,10	14,91							
3	91,05	11,94							
4	107,05	10,99							
5	159,05	10,64							
6	123,10	9,30							
7	93,05	7,98							
8	79,05	7,57							
9	108,10	7,31							
10	105,10	6,48							

Formula Weight = 284.39266Molecular Formula $C_{19}H_{24}O_2$

Fig.S33. GC-MS spectra of androst-1,4-diene-3,17-dione (ADD)

- I							 122												-									
100-1																												
75-																												
00-							115																					
25-																												
1	41		55	79	91	1.1		135		159	171		199		777	241		255	28	4 200		1	97 3		355	375	180	
0-4		50.0		75.0		100.0	125.0		150	1.0	17	5.0	200	0 2	25.0	2	50.0	27	5.0	3	00.0	325	0	35	0.0	375.0		400.0

Fig.S34. Enlarged GC-MS spectra of androst-1,4-diene-3,17-dione (ADD)

Table S3. Intensity of fragments arising from degradation of compound 6β -hydroxyandrost-4-ene-3,17-dione (**6\betaOH-AD**)

nr	Precursor	relative							
	ion (m/z)	abundance							
		[%]							
1	302,10	100							
2	152,00	55							
3	287,05	54							
4	110,10	32							
5	79,05	26							
6	55,00	23							
7	91,05	23							
8	93,05	22							
9	303,10	21							
10	149.05	19							

Formula Weight = 302.40794Molecular Formula $C_{19}H_{26}O_3$

Fig.S35. GC-MS spectra of 6β-hydroxyandrost-4-ene-3,17-dione (6βOH-AD)

Fig.S36. Enlarged GC-MS spectra of 6β-hydroxyandrost-4-ene-3,17-dione (6βOH-AD)

Table S4. Intensity of fragments arising from degradation of compound 6β -hydroxyandrost-1,4-diene-3,17-dione (**6\betaOH-ADD**)

nr	Precursor	relative						
	ion (m/z)	abundance						
		[%]						
1	121,10	100						
2	134,10	69						
3	119,10	50						
4	91,05	46						
5	133,10	46						
6	122,10	44						
7	105,10	33						
8	147,05	31						
9	123,10	28						
10	77.05	29						

Formula Weight = 300.39206Molecular Formula $C_{19}H_{24}O_3$

Fig.S37. GC-MS spectra of 6β-hydroxyandrost-1,4-diene-3,17-dione (6βOH-ADD)

Fig.S38. Enlarged GC-MS spectra of 6β-hydroxyandrost-1,4-diene-3,17-dione (**6βOH-ADD**)

Table S5. Intensity of fragments arising from degradation of compound 3β -hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3\betaOH-lactone**)

nr	Precursor	relative							
	ion (m/z)	abundance							
		[%]							
1	289,10	100							
2	55,00	47							
3	43,00	42							
4	79,05	35							
5	108,10	34							
6	93,10	32							
7	109,10	32							
8	246,05	29							
9	231,05	29							
10	67.05	26							

Formula Weight = 304.42382Molecular Formula C₁₉H₂₈O₃

Fig.S39. GC-MS spectra of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOHlactone**)

Fig.S40. Enlarged GC-MS spectra of 3β-hydroxy-17a-oxa-D-homo-androst-5-ene-17-one (**3βOH-lactone**)

Table S6. Intensity of fragments arising from degradation of compound 17a-oxa-D-homoandrost-4-ene-17-one (**testololactone**)

nr	Precursor	relative							
	ion (m/z)	abundance							
		[%]							
1	260,10	100							
2	107,10	44							
3	43,00	40							
4	302,10	38							
5	79,05	36							
6	91,05	35							
7	55,00	33							
8	123,10	29							
9	124,10	28							
10	109,10	28							

Formula Weight = 302.40794Molecular Formula C₁₉H₂₆O₃

Fig.S41. GC-MS spectra of 17a-oxa-D-homo-androst-4-ene-17-one (testololactone)

Fig.S42. Enlarged GC-MS spectra of 17a-oxa-D-homo-androst-4-ene-17-one (testololactone)

Table S7. Intensity of fragments arising from degradation of compound 3β , 7α -dihydroxyandrost-5-ene-17-one (7α OH-DHEA)

nr	Precursor	relative							
	ion (m/z)	abundance							
		[%]							
1	286	100							
2	272	21							
3	91	16							
4	105	16							
5	79	14							
6	109	12							
7	107	12							
8	143	12							
9	55	12							
10	253	9							

Formula Weight = 304.42382Molecular Formula C₁₉H₂₈O₃

Fig.S43. GC-MS spectra of 3β,7α-dihydroxyandrost-5-ene-17-one (**7αOH-DHEA**)

Fig.S44. Enlarged GC-MS spectra of 3β , 7α -dihydroxyandrost-5-ene-17-one (7α OH-DHEA)

Table S8. Intensity of fragments arising from degradation of compound and rost-5-ene- 3β , 7α , 17α -triol (3β , 7α , 17α -triol)

nr	Precursor	relative							
	ion (m/z)	abundance							
		[%]							
1	286	100							
2	91	33							
3	271	31							
4	79	25							
5	105	23							
6	287	22							
7	143	20							
8	77	20							
9	253	16							
10	131	15							

Formula Weight = 306.4397Molecular Formula $C_{19}H_{30}O_3$

Fig.S45. GC-MS spectra of androst-5-ene-3β,7α,17α-triol (**3β,7α,17α-triol**)

3	8							-			-									_					
100-																4	00						A		
- 1																									í
75-																									
50-																									
~				79 91																					í
-	41	55			l lu	117	11	159				211			253										
đ		<u> </u>	1.1	ال مارانا	ببالبت خيابي	ي. ايانيا	بالبليل الماليل	_ برا بر ان		, Idau	197	- du	1,1229			1		302	313	328		361	375	40	'n
		50.0	7	5.0	100.0	125.0	0 1	50.0	175.0		200.0		225.0	25	0.0	75.0		300.0	32	5.0	350.0		375.0	400	0.0

Fig.S46. Enlarged GC-MS spectra of androst-5-ene-3β,7α,17α-triol (**3β,7α,17α-triol**)

Table S9. Intensity of fragments arising from degradation of compound 3β -hydroxyandrost-5-ene-7,17-dione (**70xo-DHEA**)

nr	Precursor	relative					
	ion (m/z)	abundance					
		[%]					
1	91	100					
2	161	94					
3	134	93					
4	284	90					
5	241	74					
6	229	60					
7	187	59					
8	256	57					
9	119	54					
10	105	49					

Formula Weight = 302.40794Molecular Formula $C_{19}H_{26}O_3$

Fig.S47. GC-MS spectra of 3β-hydroxyandrost-5-ene-7,17-dione (7Oxo-DHEA)

Fig.S48. Enlarged GC-MS spectra of 3β-hydroxyandrost-5-ene-7,17-dione (**7Oxo-DHEA**)

