Supporting information

A Green Approach to the Synthesis of Ag Doped Nano Magnetic γ-

Fe₂O₃@SiO₂-CD Core–Shell Hollow Sphere as an Efficient and

Heterogeneous Catalyst for Ultrasonic-Assisted A³ and KA² Coupling

Reactions

S. Sadjadi*a, M. Malmir, b M. M. Heravi*b

^a Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran. E-mail: <u>samahesadjadi@yahoo.com</u>

^bDepartmentof Chemistry, School of Science, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran Tel.: +98 21 88044051; fax: +98 21 88041344

mmh1331@yahoo.com

1. General information	S3
1.1. General details	S3
2. Characterizations of Catalyst	S4
2.1. Possible formation process	S4
2.2. Mechanism of the reaction	S5
2.3. FT-IR analysis	S6
2.4. XRD patterns	S6
2.5. TGA analysis	S7
2.6. VSM Curves	S7
2.7. SEM/EDS analysis	S8
2.8. Elemental analysis	S9
2.9. N_2 adsorbtion-desorbtion	S10
3. Spectral data for selected compounds	S11-S12
3.1. Copies of ¹ H and ¹³ C NMR for selected products	S13-S19

1. General information

The schematic processes of synthesis of the catalyst are depicted in Scheme 1. This catalyst was prepared from commercially inexpensive available materials and fully characterized using, the corresponding data, provided by FT-IR, SEM/EDX, XRD, TGA, BET, ICP-AES and VSM techniques.

1.1. General details

All chemicals and reagents, including trisodium citrate dihydrate, sodium acetate trihydrate, FeCl₃·6H₂O, TEOS. β-cyclodextrin, N-(2-(trimethoxysilyl)ethyl)methanediamine, toluene, triethylamine, acetone, ethanol, ethylene glycol (EG), urea, AgNO₃ and NH₃·H₂O, were analytical grade reagents, purchased from Sigma-Aldrich, and used without further purification. The progress of the organic reactions were monitored by TLC on commercial aluminum-backed plates of silica gel 60 F254, visualized, using ultraviolet light. Melting points were determined in open capillaries using an Electrothermal 9100 without further corrections. ¹H NMR and ¹³C NMR spectra were recorded on Bruker DRX-400 spectrometer at 400 and 100 MHz respectively. The catalyst characterization was performed by using various characterization techniques including XRD, FTIR, BET, SEM/EDX, TGA, and ICP-AES. FTIR spectra were obtained by using PERKIN-ELMER- Spectrum 65 instrument. The BET analyses were carried out using BELSORP Mini II instrument. Prior to BET analyses, the samples were degassed at 423 K for 3h. SEM/EDX images were recorded by employing a Tescan instrument, using Au-coated samples and acceleration voltage of 20 kV. Room temperature powder X-ray diffraction patterns were obtained by using a Siemens, D5000.CuK α radiation from a sealed tube.

2. Characterizations of Catalyst

2.1. **Possible formation process**

Scheme 1The possible formation process of h-Fe₂O₃@SiO₂-CD/Ag hollow spheres

2.2. Mechanism of the reaction

Scheme 2 Plausible mechanism for the synthesis of propargylamine by $h-Fe_2O_3@SiO_2-CD/Ag$.

Fig. 1 The FT-IR spectra of a) h-Fe₂O₃@SiO₂-CD and b) h-Fe₂O₃@SiO₂-CD/Ag

2.4. X-ray diffraction spectra

Fig. 2 The XRD pattern of h-Fe₂O₃@SiO₂-CD/Ag

Fig. 3 The TGA analysis of the h-Fe₂O₃@SiO₂-CD/Ag

2.6. VSM analysis

Fig. 4 VSM analyses of a) h-Fe₂O₃ and b) h-Fe₂O₃@SiO₂-CD/Ag

2.6. SEM/EDX analysis

Fig. 5 The FE-SEM analysis of a) h-Fe₂O₃@SiO₂ and SEM analyses of b) h-Fe₂O₃@SiO₂-CD c)h-Fe₂O₃@SiO₂-CD/Ag and d) the EDX analysis of h-Fe₂O₃@SiO₂-CD/Ag

2.7.The elemental mapping image

Fig. 6 The elemental mapping analysis of h-Fe₂O₃@SiO₂-CD/Ag

$\label{eq:2.8.} \mathbf{N}_2 \ \textbf{adsorbtion-desorbtion} \ \textbf{analysis}$

Fig. $7N_2$ adsorption-desorption isotherms of the catalyst

3. Spectral data for selected compounds[1]

1-(1,3-diphenylprop-2-ynyl)piperidine (Table 2, 4a): Pale yellow oily liquid; ¹H NMR (400 MHz, CDCl₃, ppm) δ 1.45-1.49 (m, 2H), 1.58-1.65 (m, 4H), 2.59 (t, 4H), 4.81 (s, 1H), 7.31-7.40 (m, 6H), 7.53-7.55 (m, 2H), 7.65-67 (d, J=7.6 Hz, 2H).

1-(3-phenyl-1-(4-(3-phenyl-1-(piperidin-1-yl)prop-2-ynyl)phenyl)prop-2ynyl)piperidine(Table 2, 4h): White solid; mp 157-159 °C (Lit.¹ 158-160 °C); ¹H NMR (400 MHz, CDCl₃, ppm) δ 1.47 (m, 2H), 1.59-1.63 (m, 4H), 2.59 (m, 4H), 4.81 (s, 1H), 7.33-7.35 (m, 3H), 7.52-7.55 (m, 2H), 7.63 (s, 2H).

N,N-diethyl-1,3-diphenylprop-2-yn-1-amine(Table 2, 4q): Pale yellow oily liquid; ¹H NMR (400 MHz, CDCl₃, ppm) δ 1.04 (m, 6H), 2.36-2.62 (m, 4H), 5.19 (s, 1H), 7.15-7.27 (m, 4H), 7.29-7.38 (m, 3H), 7.39-7.41 (m, 2H).

4-(1-(2-phenylethynyl)cyclohexyl)morpholine(Table 2, 4s):Pale yellow oily liquid; ¹H NMR (400 MHz, CDCl₃, ppm) δ 1.28-1.30 (m, 1H), 1.52 (m, 2H), 1.63-1.67 (m, 3H), 1.73 (br.s, 2H), 2.03-2.05 (m, 2H), 2.74 (br.s, 4H), 3.78 (br.s, 4H), 7.27 (m, 3H), 7.44-7.45 (m, 2H), ¹³C NMR (100 MHz, CDCl₃, ppm) δ 22.7, 25.7, 35.4, 46.6, 58.8, 67.4, 86.4, 89.8, 123.4, 127.7, 128.1, 131.7.

3.1. Copies of ¹H and ¹³C NMR for selected products [1]

Fig. 8 ¹H NMR spectrum of (Table 2, 4a)

Fig. 9 ¹H NMR, Expand spectrum of (Table 2, 4a)

Fig. 10 ¹H NMR, spectrum of (Table 2, 4h)

NAME
1Nemati-Firouzeh
1H

EXPNO
4
PROCNO
1

PROCNO
20140825
1
1

Timme
15.44
1
15.44
1

PROBHD
5 mm PABBO BB-PULPROG
2g
2g
1
20140825

TD
32768
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
5 1 = CHANNEL f1 ====== 1H 13.50 usec 0.00 dB 11.30348873 W 400.1328009 MHz 32768 400.1328009 MHz 6 EM 0.30 Hz 0 1.00 NUC1 P1 PL1 PL1W SFO1 SF WDW SSB LB GB PC

3 A.E

1Nemati-Firouzeh 1H 4

Fig. 12 ¹H NMR, spectrum of (Table 2, 4q)

Fig.13 ¹H NMR, spectrum of (Table 2, 4s)

Fig.14 ¹³C NMR, spectrum of (Table 2, 4s)

Reference:

[1] A. Elhampour, M. Malmir, E. Kowsari, F. A. Boorboor and F. Nemati, *RSC Adv.*, 2016, **6**, 96623-96634.