Tuning the Spectral, Thermal and Fluorescent Properties of Conjugated Polymers via Random Copolymerization of Hole Transporting Monomers by Sapana Jadoun<sup>a</sup>, Syed Marghoob Ashraf<sup>a†</sup>, and Ufana Riaz<sup>a\*</sup>

| Copolymer<br>molar ratio<br>(PCz:POP<br>D) | Amount<br>of Cz<br>taken<br>(g) | Amount<br>of OPD<br>taken (g) | Color of synthesized polymer | Yield<br>(%) | η    | M <sub>v</sub><br>(viscosity<br>average molar<br>mass) |
|--------------------------------------------|---------------------------------|-------------------------------|------------------------------|--------------|------|--------------------------------------------------------|
| 100:0                                      | 1                               |                               | Light green                  | 98.23        | 0.16 | 4320                                                   |
| 0:100                                      |                                 | 1                             | Dark brown                   | 69.03        | 0.35 | 6583                                                   |
| 90:10                                      | 2.50                            | 0.17                          | Light creamish               | 93.00        | 0.20 | 4828                                                   |
| 70:30                                      | 2.50                            | 0.69                          | Dark creamish                | 91.23        | 0.28 | 4348                                                   |
| 60:40                                      | 2.50                            | 1.07                          | Light brown                  | 82.26        | 0.16 | 2484                                                   |
| 50:50                                      | 2.50                            | 1.61                          | Brown                        | 92.21        | 0.17 | 4811                                                   |
| 40:60                                      | 2.50                            | 2.41                          | Brownish Black               | 77.80        | 0.28 | 4348                                                   |
| 30:70                                      | 2.50                            | 3.75                          | Brownish Black               | 64.32        | 0.32 | 4969                                                   |
| 10:90                                      | 2.50                            | 14.55                         | Brownish Black               | 51.61        | 0.36 | 7327                                                   |

Table S1 Recipe for synthesis of homopolymers and copolymers of PCz,POPD

| Polymer/copolymer | NMP     | DMSO    | THF     | Ethanol                              | Acetone                              |
|-------------------|---------|---------|---------|--------------------------------------|--------------------------------------|
| POPD              | ES (DY) | ES (DY) | ES (BY) | $\mathrm{ES}\left(\mathrm{Y}\right)$ | $\mathrm{ES}\left(\mathrm{Y}\right)$ |
| PCz               | ES (PY) | ES (PY) | ES (BY) | IS(Y)                                | IS (Y)                               |
| PCz: POPD-90:10   | ES (PY) | ES (PY) | ES (BY) | IS (Y)                               | IS (Y)                               |
| PCz: POPD-30:70   | ES (BY) | ES (PY) | ES (BY) | IS (Y)                               | IS (Y)                               |
| PCz: POPD-60:10   | ES (BY) | ES (PY) | ES (BY) | IS (Y)                               | IS (Y)                               |
| PCz: POPD-50:50   | ES (BY) | ES (BY) | ES (BY) | S (Y)                                | S (Y)                                |
| PCz: POPD-40:60   | ES (BY) | ES (BY) | ES (BY) | S (Y)                                | S (Y)                                |
| PCz: POPD-30:70   | ES (BY) | ES (BY) | ES (BY) | S (Y)                                | S (Y)                                |
| PCz: POPD-10:90   | ES (DY) | ES (DY) | ES (BY) | S (Y)                                | S (Y)                                |

Table S2 Solubility of homopolymers and copolymers in different polar solvents

ES- Easily soluble; S- soluble; IS- insoluble.

The letters in the parentheses indicate the color of solution- DY-dark yellow; PY pale yellow; BY-bright yellow; Yellow

| Sample           | Mass of C % |        | Mass of H % |       | Mass of N % |       |
|------------------|-------------|--------|-------------|-------|-------------|-------|
|                  | Calculated  | Found  | Calculated  | Found | Calculated  | Found |
| PCz:POPD (90:10) | 84.25       | 75.41z | 4.18        | 4.94  | 9.69        | 8.80  |
|                  |             |        |             |       | (75:25)     |       |
| PCz:POPD (70:30) | 77.67       | 77.73  | 4.06        | 4.97  | 10.76       | 9.90  |
|                  |             |        |             |       | (65:35)     |       |
| PCz:POPD (60:40) | 74.82       | 79.81  | 4.02        | 4.99  | 10.16       | 10.30 |
|                  |             |        |             |       | (55:45)     |       |
| PCz:POPD (50:50) | 71.50       | 72.42  | 3.97        | 5.08  | 13.75       | 12.35 |
|                  |             |        |             |       | (50:50)     |       |
| PCz:POPD (40:60) | 74.43       | 75.08  | 4.28        | 5.11  | 16.37       | 15.17 |
|                  |             |        |             |       | (45:55)     |       |
| PCz:POPD (30:70) | 79.52       | 79.70  | 7.04        | 5.13  | 17.20       | 15.80 |
|                  |             |        |             |       | (40:60)     |       |
| PCz:POPD (10:90) | 56.48       | 58.31  | 3.70        | 4.40  | 18.23       | 16.95 |
|                  |             |        |             |       | (35:65)     |       |

Table S3 CHN values of copolymers of PCz and POPD





(d)











(i)

Figure S1 <sup>1</sup>H-NMR spectra of (a) PCZ, (b) POPD,(c) PCz:POPD-10:90, (d) PCz:POPD-30:70, (e) PCz:POPD-40:60,(f) PCz:POPD-50:50,(g) PCz:POPD-60:40,(h) PCz:POPD-70:30,(i) PCz:POPD-90:10









Figure S3 Cyclic voltammograms of (a) PCz,(b) POPD, (c) PCz:POPD-10:90, (d) PCz:POPD-40:60,(e) PCz:POPD-60:40,(f) PCz:POPD-70:30







(c) Figure S4 FTIR spectra of (a) PCz,(b) POPD and (c) copolymers of PCz:POPD



Figure S5 TEM of mixture of PCz and POPD



Figure S6 (A) Plots of (a) F-W-O method (b) Vyazokovin method (c) Friedman method of PCz at 5°,10° and 15° heating rates with conversion rate ( $\alpha$ ) 0.1,0.2,0.3,0.4,0.5,0.6

**(B)** 



Figure S6 (B) Plots of (a) F-W-O method (b) Vyazokovin method (c) Friedman method of POPD at 5 °,10 ° and 15 ° heating rates with conversion rate ( $\alpha$ ) 0.1,0.2,0.3,0.4,0.5 and 0.6

**(C)** 



Figure S6 (C) Plots of (a) F-W-O method (b) Vyazokovin method (c) Friedman method of PCz:POPD-90:10 at 5°,10° and 15° heating rates with conversion rate ( $\alpha$ ) 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6

**(D)** 



Figure S6 (D) Plots of (a) F-W-O method (b) Vyazokovin method (c) Friedman method of PCz:POPD-70:30 at 5°,10° and 15° heating rates with conversion rate ( $\alpha$ ) 0.1, 0.2, 0.3,0.4, 0.5 and 0.6

**(E)** 



Figure S6 (E) Plots of (a) F-W-O method (b) Vyazokovin method (c) Friedman method of PCz:POPD-60:40 at 5 °,10 ° and 15° heating rates with conversion rate (α) 0.1,0.2,0.3,0.4,0.5, and 0.6

**(F)** 



Figure S6 (F) Plots of (a) F-W-O method (b) Vyazokovin method (c) Friedman method of PCz:POPD-50:50 at 5°,10° and 15° heating rates with conversion rate ( $\alpha$ ) 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6

(G)



Figure S6 (G) Plots of (a) F-W-O method (b) Vyazokovin method (c) Friedman method of PCz:POPD-40:60 at 5°,10° and 15° heating rates with conversion rate ( $\alpha$ ) 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6

**(H)** 



Figure S6 (H) Plots of (a) F-W-O method (b) Vyazokovin method (c) Friedman method of PCz:POPD-30:70 at 5°,10° and 15° heating rates with conversion rate ( $\alpha$ ) 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6



(c)

Figure S6 (I) Plots of (a) F-W-O method (b) Vyazokovin method (c) Friedman method of PCz:POPD-10:90 at 5°,10° and 15° heating rates with conversion rate ( $\alpha$ ) 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6