Supplementary Information

Synthesis of Phosphonic Acid Ring-Substituted Polyanilines

via Direct Phosphonation to Polymer Main Chains

Toru Amaya, *^a Izumi Kurata,^a Yuhi Inada,^b; Tomohiro Hatai^a and Toshikazu Hirao^b

^aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan

^bThe Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
[‡]Present address: Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

Fig. S1. UV-vis-NIR absorption spectra for the diluted samples 1-3 in NMP (the concentration for samples 1-3 is 0.22, 1.1, and 2.2 mM based on an aniline unit of PANI, respectively).

Fig. S2. ³¹P NMR spectrum for EtPhosPANI **3a** (33%P) in DMSO- d_6 (162 MHz).

Fig. S3. ¹H NMR spectrum for EtPhosPANI **3a** (33%P) (the peaks are marked as **o**) in DMSO- d_6 (400 MHz).

Scheme S1. Proposed mechanistic pathway of (a) mono-phosphonation and (b) di-phosphonation.

(eme	PANI iraldine base) — 1 ^N	(NH₄)₂S₂O ₈ (0.38 equiv) P/ → (oxidiz MP, rt, 0.5 h	ANI ed form) 4 P(OEt) ₃ (Y equiv), H ₂ O (2.5 equiv) Temperature [°C], 1	→ EtPhosPANI 3 h
Entry	P(OEt) ₃	Temperature	Substitution ratio of	Yield $[\%]^c$
	Y [equiv] ^a	[°C]	phosphonate [%] ^b	
$1^{d,g}$	0.75	rt	9	56
2^{d}	2.5	rt	24	54
3 ^e	7.8	rt	37	63
4 ^e	15	rt	42	63
5 ^e	7.8	60	46	65
6^{f}	7.8	60	52	77
7 ^e	7.8	120	49	25
8 ^e	15	60	37	50

Table S1. Investigation of substitution ratio of phosphonate toward the reaction temperature and equivalents of $P(OEt)_3^a$

^{*a*}Equivalents were calculated based on an aniline unit of PANI **1**. Amounts of the reagents were calculated based on the mole number of **1**. ^{*b*}Substitution ratio of phosphonate was calculated similarly to those for EtPhosPANIs **3a-c** based on ICP-AES analysis although TGA analysis was not conducted for these entries in this Table except entry 6. ^{*c*}Yield [%] = (mole of product)/ (mole of substrate)*100, where mole of **3** is calculated using the molecular weight of **3** estimated from the structure given in Fig. 1 in the main text. ^{*d*}The reactions were carried out using 101 mg of **1** (1.12 mmol) and 5.0 mL of NMP. ^{*c*}The reactions were carried out using 362 mg of **1** (4.00 mmol) and 20.0 mL of NMP. ^{*f*}This entry is described for EtPhosPANI **3b**. The reactions were carried out using 1.81 g of **1** (20.00 mmol) and 100.0 mL of NMP. ^{*g*}Reaction time for phosphonation step was 1.5 h.

Fig. S4. UV-vis-NIR absorption spectrum for ca. 5.4 x 10^{-2} g/L of PhosPANI **2b** in H₂O/MeOH/0.15 M NH₃ aq. = 1/1/1 (v/v).

NMR spectra for 6

¹H NMR spectrum in DMSO-*d*₆ (400 MHz)

¹³C NMR spectrum in DMSO- d_6 (100 MHz)

³¹P NMR spectrum in DMSO-*d*₆ (162 MHz)

NMR spectra for 7

¹H NMR spectrum in CD₂Cl₂ (400 MHz)

¹³C NMR spectrum in CD₂Cl₂ (150 MHz)

³¹P NMR spectrum in CD₂Cl₂ (162 MHz)