Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

High-performance method of carbon nanotubes modification by microwave plasma for thin composite films preparation

Anna Dettlaff^a, Mirosław Sawczak^b, Ewa Klugmann-Radziemska^a, Dariusz Czylkowski^b, Robert Miotk^b, Monika Wilamowska-Zawłocka^{a*}

^a Department of Chemical Apparatus and Theory of Machines, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

^b Institute of Fluid Flow Machinery, Polish Academy of Sciences,

Fiszera 14, 80-231 Gdańsk, Poland

*E-mail: monika.wilamowska@pg.gda.pl

Supplementary information

Table 1s⁺**.** Conditions of nitrogen plasma treatment of carbon nanotubes.

Sample name:	Α	В	С	D	E	F	G	н	1	J	К
Modification method:	Pristine CNTs	N-CNTs modified in standard RF plasma (in chamber)				(p)N-CNTs modified in flow MW plasma					
Plasma conditions:	-	50 W, t= 2 min, f=13.56 MHz	50 W, t= 5 min, f=13.56 MHz	50 W, t= 20 min, f=13.56 MHz	50 W, t= 60 min, f=13.56 MHz	150 W	150 W	250 W	250 W	1000 W	1000 W
Dispersed in:	water	water	water	water	water	water	0.1 M PSSNa in water	water	0.1 M PSSNa in water	water	0.1 M PSSNa in water

Fig. 1st. Aqueous suspensions of pristine and modified carbon nanotubes after 1 h and 4 h of sonication, respectively. Samples' names A-K according to Table 1st.