Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Novel Imprinted Polyethyleneimine Nano-fluorescent Probes with

Controllable Selectivity for Recognizing and Adsorbing Metal Ions

Jin Jia,^{ac#} Guijuan Cheng,^{b#} Aihua Wu,*c and Shengji Luan ^a

Fig. S1 Infrared spectrum of PEI, fluorescein, Cu-IIP and Cu-IIP-Fluorescein.

Fig. S2 Fluorescence intensity of fluorescein dependence on pH and temperature. (A) Fluorescein is hydrophobic at low pH of solution. Upon increasing the solution pH, the hydrogen ions on carboxyl and phenolic hydroxyl group of fluorescein are dissociated. The solubility of fluorescein in water increase and charge transfer is enhanced, resulted in the increase of fluorescence intensity. (B) The higher temperature intensifies molecular vibration and collision in solution. The emission energy in electron transition process is easier to dissipation by collision, leading to the decrease of fluorescence intensity.

Fig. S3 Fluorescence intensity of fluorescein $(0.5\mu M)$ with adding of each metal ion (5mg/L).

	Cu-IIP-Fluorescein	Cu-IIP-Fluorescein+ Cu ²⁺ (α electron)	Cu-IIP-Fluorescein+ Cu ²⁺ (βelectron)
LUMO+1			
		165 MO -0.05208 a.u.	164 MO -0.09975 a.u.
LUMO			
	155 MO -0.09878 a.u.	164 MO -0.09975 a.u.	163 MO -0.11493 a.u.
НОМО			
	154 MO -0.23156 a.u.	163 MO -0.22905 a.u.	162 MO -0.22913 a.u.
HOMO-1			
	153 MO -0.23499 a.u.	162 MO -0.25199 a.u.	161 MO -0.25883 a.u.

Fig. S4 Frontier molecular orbital distributions and energy of Cu-IIP-Fluorescein

Fig. S5 Electron density distribution of fluorescein (A), probe before (B) and after (C) coordinating with metal ions.

$$\label{eq:pei-Cu} \begin{split} & \text{PEI-Cu}^{2+} \\ & \Delta \text{H} = -47.8 \text{ kcal/mol} \end{split}$$

 $PEI-Cr^{3+}$ $\Delta H = -59.9 \text{ kcal/mol}$

 $PEI-Co^{2+}$ $\Delta H = -53.2 \text{ kcal/mol}$

$$\label{eq:pei-Zn} \begin{split} & \text{PEI-Zn}^{2+} \\ & \Delta \text{H} = \text{-28.8 kcal/mol} \end{split}$$

 $PEI-Ni^{2+}$ $\Delta H = -45.6 \text{ kcal/mol}$

 $PEI-Pb^{2+}$ $\Delta H = -25.5 \text{ kcal/mol}$

PEI-Cd2+PEI-Ag+ $\Delta H = -26.0 \text{ kcal/mol}$ $\Delta H = -25.4 \text{ kcal/mol}$

Fig. S6 Spatial configuration simulation and enthalpy of PEI coordinated with metal ions. The blue ball

and red ball represent nitrogen atom and oxygen atom, respectively. ΔH means enthalpy changes in coordination process. The higher absolute value indicates the complex is more stable. The PEI-Co²⁺ and PEI-Ni²⁺ have relative higher enthalpy changes, however the adsorption capacities are very low in experiment. The reasonable explanation for PEI-Co²⁺ is that coordination process is under restriction of dynamics with much higher activation energy. The PEI-Ni²⁺ is octahedron structure with 6 amidogen of PEI. However, the PEI polymer chains are hardly to form this compact structure due to intramolecular or intermolecular steric hindrance.

Fig.S7 (A) Concentration distribution histogram of metal ions in river water (added each metal ion of 1 mg/L). Cu-IIP-Flu, Zn-IIP-Flu or Cr-IIP-Flu represents the concentration distribution after treatment by Cu-IIP-Fluorescein, Zn-IIP-Fluorescein or Cr-IIP-Fluorescein, respectively. 3 Probes represents the treatment by three probes together. (B) Removal rate of metal ions with 0.1 μ M of each nano-fluorescent probe.

Fig.S8 Relative fluorescence intensity and adsorption capacities of three nano-fluorescent probes to template metal ions (Cu^{2+} , Zn^{2+} or Cr^{3+}) in five times of reuse. The probes were eluted and regenerated with 0.1 M EDTA (A, C and E) or 0.1 M hydrochloric acid (B, D and F). Black bars represent the initial fluorescence intensity of regenerated probes at 523 nm (I) over the original emission at 523 nm (I0). Red, violet or orange bars represent the fluorescence intensities after addition of 10 mg/L Cu^{2+} , Zn^{2+} or Cr^{3+} to a 0.1 μ M relevant probe solution, respectively. Green bars represent adsorption capacities to Cu^{2+} , Zn^{2+} or Cr^{3+} , respectively.

	Particle Diameter (nm)	Zeta Potential (mV)	Isoelectric Point
	$(\text{mean}^a \pm \text{SD}^b)$	$(\text{mean}^a \pm SD^b)$	$(\text{mean}^a \pm SD^b)$
Cu-IIP	178 ± 12	$+\ 47.2\pm0.8$	11.24 ± 0.28
Zn-IIP	227 ± 29	$+\ 68.3 \pm 1.8$	12.84 ± 0.34
Cr-IIP	208 ± 23	$+\ 54.6 \pm 2.1$	11.86 ± 0.53
Cu-IIP-Fluorescein	190 ± 19	$+$ 32.5 \pm 1.2	10.08 ± 0.15
Zn-IIP-Fluorescein	268 ± 44	$+\ 30.3 \pm 3.7$	9.54 ± 0.81
Cr-IIP-Fluorescein	241 ± 36	$+\ 31.8\pm4.3$	9.69 ± 0.26
NIP-Fluorescein	293 ± 109	$+22.6\pm0.2$	8.40 ± 0.63
Fluorescein	/	$+ \ 0.4 \pm 0.1$	5.83 ± 0.12
^a Mean of three determin	nations. ${}^{b}SD = standard de$	viation. \Not nanoparticle	S.

Table S1 Particle diameter, Zeta potential and isoelectric point of IIPs and probes

Table S2 Absorbance and fluorescent peak area of fluorescein and probes								
							Slope ^a	\mathbb{R}^{2b}
	Concentration (µM)	0.0025	0.005	0.01	0.025	0.05		
Fluorescein	Absorbance (496 nm)	0.0251	0.0313	0.0422	0.0713	0.111	946249	0.9992
	Peak Area	12004	17513	26529	53778	93238		
	Concentration (µM)	0.0005	0.001	0.0025	0.005	0.01		
Cu-IIP-Fluorescein	Absorbance (496 nm)	0.0273	0.0317	0.0423	0.0606	0.0968	857208	0.9999
	Peak Area	4002	7755	17153	32262	63687		
	Concentration (µM)	0.0005	0.001	0.0025	0.005	0.01		
Zn-IIP-Fluorescein	Absorbance (496 nm)	0.0267	0.0309	0.0401	0.0582	0.0957	798111	0.9995
	Peak Area	3437	6427	12875	27873	58191		
	Concentration (µM)	0.0005	0.001	0.0025	0.005	0.01		
Cr-IIP-Fluorescein	Absorbance (496 nm)	0.0271	0.0319	0.0414	0.0599	0.0989	816273	0.9998
	Peak Area	3749	7375	16071	30731	62342		
	Concentration (µM)	0.0005	0.001	0.0025	0.005	0.01		
NIP-Fluorescein	Absorbance (496 nm)	0.0338	0.0383	0.0495	0.0711	0.1177	742295	0.9996
	Peak Area	2780	6278	15563	31345	65239		
^a Slope of Peak Area (y) dependence on Absorbance (x). The fluorescence quantum yields of probes were calculated								
through the slope ratio between probes and standard substance (Fluorescein). ${}^{b}R^{2}$ = Fitting variance.								

Addad Interformat	Cu ²⁺ (1 mg/L)		Zn ²⁺ (1 mg/L)		$Cr^{3+}(1 mg/L)$	
Added Interferent (1 mg/I)	Determination	Removal	Determination	Removal	Determination	Removal
(T mg/L)		rate	Determination	rate	Determination	rate
KAl(SO ₄) ₂ ·12H ₂ O	0.735 ± 0.104	95.1%	0.715 ± 0.162	93.4%	0.762 ± 0.128	94.2%
$CaCl_2$	1.013 ± 0.021	96.2%	1.025 ± 0.014	93.1%	1.009 ± 0.023	95.3%
KH ₂ PO ₃	0.994 ± 0.068	95.8%	0.989 ± 0.083	94.4%	1.004 ± 0.059	94.1%
NH ₄ Ac	0.998 ± 0.013	95.6%	0.108 ± 0.032	94.1%	0.986 ± 0.019	94.8%
Phenol	1.004 ± 0.020	95.9%	1.016 ± 0.036	94.6%	1.042 ± 0.027	95.2%
Methanal	1.022 ± 0.016	96.1%	1.008 ± 0.029	94.3%	0.994 ± 0.034	94.7%
Chloroform	1.016 ± 0.023	95.7%	0.992 ± 0.042	93.2%	1.035 ± 0.039	94.4%
KMnO ₄	3.156 ± 0.268	95.5%	3.953 ± 0.354	93.3%	3.492 ± 0.468	94.5%

Table S3. Determination and removal rate of template metal ions with interferents. (pH = 5.65, 25 °C)