One-step synthesis of magnetically recyclable Co@BN coreshell nanocatalysts for catalytic reduction of nitroarenes

Man Du, [†] Qiuwen Liu, [†] Caijin Huang^{*, †}and Xiaoqing Qiu^{*, ‡}

*State Key Laboratory of Photocatalysis on Energy and Environment, College of

Chemistry, Fuzhou University, Fuzhou 350002, P. R. China.

*College of Chemistry and Chemical Engineering, Central south University, Changsha, 41083, China

*To whom correspondence should be addressed.

E-mail: cjhuang@fzu.edu.cn, xq-qiu@csu.edu.cn

Fig. S1 (a) FTIR and (b) Raman spectra of *h*-BN and the Co@BN samples with various Co contents.

Fig. S2. (a) Hysteresis loops of the 13.6 wt% Co@BN nanocatalyst measured at 300 K. (b) photographs of the Co@BN dispersion before (left) and after (right) the magnetic separation.

Fig. S3. Evolution of UV-vis spectra of the 4-NP solution added with NaBH₄ or *h*-BN.

Fig. S4. Catalytic reduction of 4-nitrophenol in the presence of NaBH₄.

Fig. S5. Successive UV-vis spectra for the reduction reaction of 4-NP by $NaBH_4$ using the catalyst of 13.6 wt% Co@BN nanoparticles in each catalysis recycle.

Fig. S6. XRD patterns of 13.6 wt% Co@BN nanoparticles before and after the reaction.

Fig. S7. (a) N_2 adsorption–desorption isotherms and (b) the corresponding pore size distributions of 13.6 wt% Co@BN.

Fig. S8. Absorbance of 4-NP at a concentration of (a) 100 ppm, (b) 50ppm and (c) 200ppm in the presence of h-BN (10 mg).

Fig. S9. Spin adducts formed in the presence of (a) 4-NP+NaBH₄+catalyst+DMPO, (b) 4-NP+NaBH₄+DMPO, (c) NaBH₄+DMPO, (d) catalyst + DMPO, (e) 4-NP+ DMPO, (f) catalyst, (g) NaBH₄ and (h) 4-NP.

	1					1
Entry	catalyst	Yield (%)	Con. (%)	TONs	Select. (%) ^a	Ref ^c
1	FeCo@N-doped C	N. P. ^b	>95	10	N. P.	1
2	Co@N-C 700	N. P.	>99	6	N. P.	2
3	p(AMPS)–Co	N. P.	>97	5	N. P.	3
4	Co@BN	>96	>96	5	>99	This work
5	Co@SiO ₂	N. P.	>99	4	N. P.	4
6	meso-Co-150	N. P.	>99	4	N. P.	5
7	Co-NC	N. P.	>93	4	N. P.	6

 Table S1. Reduction of 4-nitrophenol to 4-aminophenol by some cobalt-based catalysts.

^a The selectivity can reach >99% because 4-aminitrophenol is the sole product for this model reaction.

^b N. P.: Not provided.

^c Refs:

- 1. L. Hu, R. Zhang, L. Wei, F. Zhang and Q. Chen, *Nanoscale*, 2015, **7**, 450-454.
- 2. Y. Yusran, D. Xu, Q. Fang, D. Zhang and S. Qiu, Micropor. Mesopor. Mat., 2017, 241, 346-354.
- 3. N. Sahiner, H. Ozay, O. Ozay and N. Aktas, *Appl. Catal. B: Environ.*, 2010, **101**, 137-143.
- 4. N. Yan, Z. Zhao, Y. Li, F. Wang, H. Zhong and Q. Chen, *Inorg. chem.*, 2014, **53**, 9073-9079.
- 5. B. M. Mogudi, P. Ncube and R. Meijboom, Appl. Catal. B: Environ., 2016, 198, 74-82.
- Z. Hasan, Y. S. Ok, J. Rinklebe, Y. F. Tsang, D.-W. Cho and H. Song, J. Alloy. Compd., 2017, 703, 118-124.

Table S2. The load of Co on the recycled catalyst 13.6 wt% Co@BN.

Recycle	Initial	First run	Second run	Third run	Fourth run	Fifth run
Co wt%	13.6	13.3	13.2	12.9	12.5	11.5