Supporting Information

$BaCu_2M^{IV}Q_4$ (M^{IV} = Si, Ge, and Sn; Q = S, Se): synthesis, crystal

structures, optical performances and theoretical calculations

Leyan Nian,^{a,b} Junben Huang,^b Kui Wu,*^b Zhi Su,*^a Zhihua Yang^b and Shilie Pan*^{a,b}

^aCollege of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China

^bKey Laboratory of Functional Materials and Devices for Special Environments of

CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices,

Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China.

*To whom correspondence should be addressed.

E-mail: slpan@ms.xjb.ac.cn Phone: (+86)991-3674558, Fax: (+86)991-3838957

List of Figures & Tables

Table S1(a) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) for BaCu₂SiSe₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S1(b) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) for BaCu₂GeS₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S1(c) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) for BaCu₂GeSe₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S1(d) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) for BaCu₂SnS₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S1(e) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) for BaCu₂SnSe₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S2(a) Bond lengths (Å) and angles (°) for BaCu₂SiSe₄.

Table S2(b) Bond lengths (Å) and angles (°) for BaCu₂GeS₄.

Table S2(c) Bond lengths (Å) and angles (°) for BaCu₂GeSe₄.

Table S2(d) Bond lengths (Å) and angles (°) for $BaCu_2SnS_4$.

Table S2(e) Bond lengths (Å) and angles (°) for BaCu₂SnSe₄.

Table S3 Calculated NLO SHG coefficients and percentage of VH (Virtual-Hole) and VE (Virtual-Electron) in $BaCu_2M^{IV}Q_4$ ($M^{IV} = Si$, Ge, and Sn; Q = S, Se).

Fig. S1(a) Powder XRD patterns of BaCu₂SiSe₄.

Fig. S1(b) Powder XRD patterns of BaCu₂GeS₄.

Fig. S1(c) Powder XRD patterns of BaCu₂GeSe₄.

Fig. S1(d) Powder XRD patterns of BaCu₂SnS₄.

Fig. S1(e) Powder XRD patterns of BaCu₂SnSe₄.

Fig. S2(a) The IR spectrum of as-synthesized BaCu₂SiSe₄.

Fig. S2(b) The IR spectrum of as-synthesized BaCu₂GeS₄.

Fig. S2(c) The IR spectrum of as-synthesized BaCu₂GeSe₄.

Fig. S2(d) The IR spectrum of as-synthesized BaCu₂SnS₄.

Fig. S2(e) The IR spectrum of as-synthesized BaCu₂SnSe₄.

Fig. S3(a) Absorption spectrum of $BaCu_2SiSe_4$. The inset diagram is the experimental band gap.

Fig. S3(b) Absorption spectrum of $BaCu_2GeS_4$. The inset diagram is the experimental band gap.

Fig. S3(c) Absorption spectrum of $BaCu_2GeSe_4$. The inset diagram is the experimental band gap.

Fig. S3(d) Absorption spectrum of $BaCu_2SnSe_4$. The inset diagram is the experimental band gap.

Fig. S4 SHG response for title compounds in different particle sizes (AgGaS₂ as the reference).

Fig. S5(a) The electronic structure of BaCu₂SiSe₄.

Fig. S5(b) The electronic structure of BaCu₂GeS₄.

Fig. S5(c) The electronic structure of BaCu₂GeSe₄.

Fig. S5(d) The electronic structure of BaCu₂SnSe₄.

Fig. S6(a) The PDOS of BaCu₂SiSe₄.

Fig. S6(b) The PDOS of BaCu₂GeS₄.

Fig. S6(c) The PDOS of BaCu₂GeSe₄.

Fig. S6(d) The PDOS of BaCu₂SnSe₄.

Fig. S7(a) SHG density of BaCu₂GeS₄.

Fig. S7(b) SHG density of BaCu₂GeSe₄.

Fig. S7(c) SHG density of BaCu₂SiSe₄.

Fig. S7(d) SHG density of BaCu₂SnSe₄.

orthogona						
Atoms	Wyck.	x	У	Z	U(eq)	BVS
Ba(1)	3a	5496(1)	10000	6667	14(1)	2.46
Cu(1)	6c	9203(2)	5863(2)	5767(1)	23(1)	0.85
Se(1)	6c	6748(1)	7671(1)	8276(1)	12(1)	1.99
Se(2)	6c	10283(1)	5168(1)	7220(1)	12(1)	2.06
Si(1)	3b	10000	7165(5)	8333	9(1)	3.94

Table S1(a) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) for BaCu₂SiSe₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor.

Table S1(b) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) for BaCu₂GeS₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor.

Atoms	Wyck	x	у	Ζ	U(eq)	BVS
Ba(1)	3b	0	4361(1)	1667	12(1)	2.49
Cu(1)	6c	4104(1)	749(1)	766(1)	21(1)	1.11
Ge(1)	3a	7142(1)	7142(1)	0	9(1)	4.01
S(1)	6c	5178(2)	4805(2)	1131(1)	11(1)	2.13
S(2)	6c	7628(2)	10930(2)	35(1)	11(1)	2.23

Table S1(c) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) for BaCu₂GeSe₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atoms	Wyck.	x	у	Ζ	U(eq)	BVS
Ba(1)	3a	4497.2(12)	4497.2(12)	0	12(2)	2.30
Cu(1)	6c	6608.(2)	797.(2)	8999(7)	21(3)	0.86
Ge(1)	3b	10000	7149(2)	1666.7	8(3)	3.92
Se(1)	6c	9669.4(16)	4781.8(15)	523.9(5)	10(2)	1.95
Se(2)	6c	6662.5(15)	7675.0(16)	1710.5(5)	10(3)	2.02

ortilogoliu	orthogonanized e ij tensor.						
Atoms	Wyck.	x	У	Z	U(eq)	BVS	
Ba(1)	3a	4324(1)	4324(1)	0	14(1)	2.24	
Cu(1)	6c	728(2)	6536(2)	893(1)	23(1)	1.12	
S (1)	6c	4575(4)	9522(4)	478(1)	13(1)	2.12	
S(2)	6c	7650(4)	6548(4)	1670(1)	13(1)	2.20	
Sn(1)	3b	7095(1)	10000	1667	11(1)	4.13	

Table S1(d) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for BaCu₂SnS₄. *U*(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S1(e) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) for BaCu₂SnSe₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	J					
Atoms	Wyck.	x	У	Ζ	U(eq)	BVS
Ba(1)	4a	0	5000	4992(1)	15(1)	2.23
Cu(1)	8c	1285(1)	2853(1)	862(2)	23(1)	0.84
Se(1)	4b	2500	1096(1)	2189(2)	13(1)	1.88
Se(2)	4b	2500	-588(1)	7456(2)	13(1)	1.97
Se(3)	8c	717(1)	2525(1)	7415(2)	13(1)	1.95
Sn(1)	4b	2500	1476(1)	5865(1)	12(1)	3.82

Table S2(a)	Bond lengths ((Å) and angles	(°) for BaCu ₂ SiSe ₄ .

Tuble 54(u) Bolla length	s (i i) and angles () 101 Dueu201004	
Ba(1)-Se(1)	3.2843(15)	Se(1)#3-Ba(1)-Se(2)#5	82.26(2)
Ba(1)-Se(1)#1	3.2843(15)	Se(2)#4-Ba(1)-Se(2)#5	129.61(3)
Ba(1)-Se(1)#2	3.3108(16)	Se(1)-Ba(1)-Se(2)#6	74.20(2)
Ba(1)-Se(1)#3	3.3108(17)	Se(1)#1-Ba(1)-Se(2)#6	141.103(18)
Ba(1)-Se(2)#4	3.3232(12)	Se(1)#2-Ba(1)-Se(2)#6	67.74(2)
Ba(1)-Se(2)#5	3.3232(12)	Se(1)#3-Ba(1)-Se(2)#6	79.46(3)
Ba(1)-Se(2)#6	3.3508(12)	Se(2)#4-Ba(1)-Se(2)#6	148.21(3)
Ba(1)-Se(2)#7	3.3508(12)	Se(2)#5-Ba(1)-Se(2)#6	66.799(13)
Cu(1)-Se(2)#5	2.4285(14)	Se(1)-Ba(1)-Se(2)#7	141.103(18)
Cu(1)-Se(1)#8	2.4286(15)	Se(1)#1-Ba(1)-Se(2)#7	74.20(2)
Cu(1)-Se(1)#9	2.5045(14)	Se(1)#2-Ba(1)-Se(2)#7	79.46(3)
Cu(1)-Se(2)	2.5391(18)	Se(1)#3-Ba(1)-Se(2)#7	67.738(19)
Si(1)-Se(2)#14	2.263(2)	Se(2)#4-Ba(1)-Se(2)#7	66.799(13)
Si(1)-Se(1)#14	2.269(2)	Se(2)#5-Ba(1)-Se(2)#7	148.21(3)
Se(1)-Ba(1)-Se(1)#1	123.62(4)	Se(2)#6-Ba(1)-Se(2)#7	115.23(3)
Se(1)-Ba(1)-Se(1)#2	69.44(4)	Se(2)#5-Cu(1)-Se(1)#8	132.69(5)
Se(1)#1-Ba(1)-Se(1)#2	147.85(2)	Se(2)#5-Cu(1)-Se(1)#9	108.47(5)
Se(1)-Ba(1)-Se(1)#3	147.85(2)	Se(1)#8-Cu(1)-Se(1)#9	99.17(4)
Se(1)#1-Ba(1)-Se(1)#3	69.44(4)	Se(2)#5-Cu(1)-Se(2)	95.36(4)
Se(1)#2-Ba(1)-Se(1)#3	116.75(5)	Se(1)#8-Cu(1)-Se(2)	117.98(5)
Se(1)-Ba(1)-Se(2)#4	85.92(2)	Se(1)#9-Cu(1)-Se(2)	98.53(5)
Se(1)#1-Ba(1)-Se(2)#4	70.67(3)	Se(2)-Si(1)-Se(1)#14	110.03(3)
Se(1)#2-Ba(1)-Se(2)#4	82.26(2)	Se(2)#14-Si(1)-Se(1)#14	112.92(3)
Se(1)#3-Ba(1)-Se(2)#4	125.534(17)	Se(2)-Si(1)-Se(1)	112.92(3)
Se(1)-Ba(1)-Se(2)#5	70.67(3)	Se(2)#14-Si(1)-Se(1)	110.03(3)
Se(1)#1-Ba(1)-Se(2)#5	85.92(2)	Se(1)#14-Si(1)-Se(1)	105.84(13)
Se(1)#2-Ba(1)-Se(2)#5	125.534(17)		
Symmetry transformation	is used to generate	e equivalent atoms:	
		1 5/2 1/2 1	1 1/2

#1 x - y + 1 - y + 2 - z + 4/3	#2 - x + 1 - x + y + 1 - z + 5/3	#3 - v + 1 x - v + 1 z - 1/3
#4 x.v+1.z	#5 x-y-y+1-z+4/3	#6 x-1.v.z
#7 x-y-y+2z+4/3	#8 -v+2.x-v+1.z-1/3	#9 x-v+1v+1z+4/3
#10 x,y-1,z	#11 x+1,y,z	#12 -x+y+1,-x+2,z+1/3
#13 -x+y,-x+1,z+1/3	#14 -x+2,-x+y+1,-z+5/3	5 7 7
•	· •	

		9	
Table S2(b)	Bond lengths	(Å) and angles ($(^{\circ})$ for BaCu ₂ GeS ₄ .

Table 52(b) Done lengths		Ducu20054.	
Ba(1)-S(2)#1	3.1597(13)	S(1)#3-Ba(1)-S(2)#5	125.23(3)
Ba(1)-S(2)#2	3.1597(13)	S(1)-Ba(1)-S(2)#5	82.87(3)
Ba(1)-S(1)#3	3.1967(14)	S(2)#4-Ba(1)-S(2)#5	114.17(5)
Ba(1)-S(1)	3.1967(13)	S(2)#1-Ba(1)-S(1)#6	73.35(3)
Ba(1)-S(2)#4	3.2017(13)	S(2)#2-Ba(1)-S(1)#6	140.17(3)
Ba(1)-S(2)#5	3.2017(13)	S(1)#3-Ba(1)-S(1)#6	148.87(4)
Ba(1)-S(1)#6	3.2489(14)	S(1)-Ba(1)-S(1)#6	66.340(16)
Ba(1)-S(1)#7	3.2489(14)	S(2)#4-Ba(1)-S(1)#6	67.49(3)
Cu(1)-S(2)#10	2.3162(13)	S(2)#5-Ba(1)-S(1)#6	77.87(3)
Cu(1)-S(1)	2.3300(13)	S(2)#1-Ba(1)-S(1)#7	140.17(3)
Cu(1)-S(2)#11	2.4164(13)	S(2)#2-Ba(1)-S(1)#7	73.35(3)
Cu(1)-S(1)#1	2.4426(14)	S(1)#3-Ba(1)-S(1)#7	66.340(16)
Ge(1)-S(1)#14	2.2147(12)	S(1)-Ba(1)-S(1)#7	148.87(4)
Ge(1)-S(1)	2.2147(12)	S(2)#4-Ba(1)-S(1)#7	77.87(3)
Ge(1)-S(2)	2.2173(13)	S(2)#5-Ba(1)-S(1)#7	67.49(3)
Ge(1)-S(2)#14	2.2173(13)	S(1)#6-Ba(1)-S(1)#7	113.87(4)
S(2)#1-Ba(1)-S(2)#2	127.65(5)	S(2)#10-Cu(1)-S(1)	134.35(5)
S(2)#1-Ba(1)-S(1)#3	87.68(3)	S(2)#10-Cu(1)-S(2)#11	99.15(3)
S(2)#2-Ba(1)-S(1)#3	70.91(3)	S(1)-Cu(1)-S(2)#11	107.51(5)
S(2)#1-Ba(1)-S(1)	70.91(3)	S(2)#10-Cu(1)-S(1)#1	116.81(5)
S(2)#2-Ba(1)-S(1)	87.68(3)	S(1)-Cu(1)-S(1)#1	95.26(3)
S(1)#3-Ba(1)-S(1)	130.75(4)	S(2)#11-Cu(1)-S(1)#1	98.72(5)
S(2)#1-Ba(1)-S(2)#4	69.00(2)	S(1)#14-Ge(1)-S(1)	105.85(7)
S(2)#2-Ba(1)-S(2)#4	146.90(3)	S(1)#14-Ge(1)-S(2)	107.91(5)
S(1)#3-Ba(1)-S(2)#4	82.87(3)	S(1)-Ge(1)-S(2)	114.46(4)
S(1)-Ba(1)-S(2)#4	125.23(3)	S(1)#14-Ge(1)-S(2)#14	114.46(4)
S(2)#1-Ba(1)-S(2)#5	146.90(3)	S(1)-Ge(1)-S(2)#14	107.91(5)
S(2)#2-Ba(1)-S(2)#5	69.00(2)	S(2)-Ge(1)-S(2)#14	106.49(7)

Symmetry transformations	s used to generate equivaler	nt atoms:
#1 -x+1,-x+y,-z+1/3	#2 x-1,y-1,z	#3 -x,-x+y,-z+1/3
#4 -y+1,x-y+1,z+1/3	#5 y-1,x,-z	#6 -x+1,-x+y+1,-z+1/3
#7 x-1,y,z	#8 -x,-x+y+1,-z+1/3	#9 x,y+1,z
#10 y-1,x-1,-z	#11 x,y-1,z	#12 x+1,y,z
#13 -x+y,-x,z-1/3	#14 y,x,-z	#15 y+1,x+1,-z
#16 x+1,y+1,z	#17 -x+y,-x+1,z-1/3	

Table S2(c)	Bond lengths (A	and angles	$(^{\circ})$ for BaCu ₂ G	ieSe₄.

Tuble S=(e) Bond length	()	- ···· 2 - ···· 4 ·	
Ba(1)-Se(4)	3.3096(13)	Se(3)#1-Ba(1)-Se(2)#4	86.32(3)
Ba(1)-Se(3)#1	3.3118(13)	Se(3)-Ba(1)-Se(2)#4	126.17(3)
Ba(1)-Se(3)	3.3281(13)	Se(4)#2-Ba(1)-Se(2)#4	82.51(3)
Ba(1)-Se(4)#2	3.3303(13)	Se(1)#3-Ba(1)-Se(2)#4	127.61(3)
Ba(1)-Se(1)#3	3.3441(13)	Se(4)-Ba(1)-Se(2)	139.63(3)
Ba(1)-Se(2)#4	3.3472(13)	Se(3)#1-Ba(1)-Se(2)	73.53(3)
Ba(1)-Se(2)	3.3818(12)	Se(3)-Ba(1)-Se(2)	78.36(3)
Ba(1)-Se(1)#5	3.3845(12)	Se(4)#2-Ba(1)-Se(2)	69.83(3)
Ba(1)-Cu(2)#3	3.6200(16)	Se(1)#3-Ba(1)-Se(2)	66.17(3)
Ba(1)-Cu(1)#4	3.6240(16)	Se(2)#4-Ba(1)-Se(2)	150.11(4)
Ba(1)-Cu(2)#5	3.8959(16)	Se(4)-Ba(1)-Se(1)#5	73.53(3)
Ba(1)-Cu(1)	3.8971(17)	Se(3)#1-Ba(1)-Se(1)#5	139.59(3)
Cu(1)-Se(1)#6	2.4269(18)	Se(3)-Ba(1)-Se(1)#5	69.81(3)
Cu(1)-Se(3)	2.4342(17)	Se(4)#2-Ba(1)-Se(1)#5	78.31(3)
Cu(1)-Se(4)#7	2.4944(18)	Se(1)#3-Ba(1)-Se(1)#5	150.14(4)
Cu(1)-Se(2)	2.541(2)	Se(2)#4-Ba(1)-Se(1)#5	66.15(3)
Cu(2)-Se(2)#1	2.4266(18)	Se(2)-Ba(1)-Se(1)#5	116.75(3)
Cu(2)-Se(4)#8	2.4363(18)	Se(1)#6-Cu(1)-Se(3)	132.96(7)
Cu(2)-Se(3)#8	2.4944(18)	Se(1)#6-Cu(1)-Se(4)#7	109.02(6)
Cu(2)-Se(1)	2.536(2)	Se(3)-Cu(1)-Se(4)#7	99.27(6)
Ge(1)-Se(1)	2.3519(16)	Se(1)#6-Cu(1)-Se(2)	95.34(6)
Ge(1)-Se(2)	2.3550(16)	Se(3)-Cu(1)-Se(2)	116.84(7)
Ge(1)-Se(3)#9	2.3605(15)	Se(4)#7-Cu(1)-Se(2)	98.97(6)
Ge(1)-Se(4)#2	2.3605(15)	Se(2)#1-Cu(2)-Se(4)#8	132.82(7)
Se(4)-Ba(1)-Se(3)#1	125.75(3)	Se(2)#1-Cu(2)-Se(3)#8	109.01(6)
Se(4)-Ba(1)-Se(3)	68.85(3)	Se(4)#8-Cu(2)-Se(3)#8	99.11(6)
Se(3)#1-Ba(1)-Se(3)	146.81(3)	Se(2)#1-Cu(2)-Se(1)	95.42(6)
Se(4)-Ba(1)-Se(4)#2	146.75(3)	Se(4)#8-Cu(2)-Se(1)	117.01(7)
Se(3)#1-Ba(1)-Se(4)#2	68.86(3)	Se(3)#8-Cu(2)-Se(1)	99.11(6)
Se(3)-Ba(1)-Se(4)#2	117.10(3)	Se(1)- $Ge(1)$ - $Se(2)$	105.07(5)
Se(4)-Ba(1)-Se(1)#3	86.33(3)	Se(1)-Ge(1)-Se(3)#9	109.21(6)
Se(3)#1-Ba(1)-Se(1)#3	70.22(3)	Se(2)-Ge(1)-Se(3)#9	113.93(6)
Se(3)-Ba(1)-Se(1)#3	82.56(3)	Se(1)-Ge(1)-Se(4)#2	114.08(6)
Se(4)#2-Ba(1)-Se(1)#3	126.21(3)	Se(2)-Ge(1)-Se(4)#2	109.14(6)
Se(4)-Ba(1)-Se(2)#4	70.21(3)	Se(3)#9-Ge(1)-Se(4)#2	105.63(5)

 #1 -x+y,-x+1,z-1/3
 #2 -x+y+1,-x+2,z-1/3
 #3 -y+1,x-y+1,z+1/3

 #4 x+1,y,z
 #5 -y+2,x-y+2,z+1/3
 #6 -y+1,x-y+2,z+1/3

 #7 x-1,y,z
 #8 -y+1,x-y+1,z-2/3
 #9 -x+y,-x+2,z-1/3

 #10-x+y-1,-x+1,z-1/3
 #11 -x+y,-x+1,z+2/3
 #12 -y+2,x-y+1,z+1/3

Table S2(d) Bond lengths (Å) and angles ((°) for BaCu ₂ SnS ₄

Ba(1)-S(2)#1	3.203(3)	S(1)#4-Ba(1)-S(2)#5	126.73(5)
Ba(1)-S(2)#2	3.203(3)	S(2)-Ba(1)-S(2)#5	113.81(9)
Ba(1)-S(1)#3	3.223(3)	S(2)#1-Ba(1)-S(1)	136.92(5)
Ba(1)-S(1)#4	3.223(3)	S(2)#2-Ba(1)-S(1)	72.17(5)
Ba(1)-S(2)	3.229(3)	S(1)#3-Ba(1)-S(1)	65.09(3)
Ba(1)-S(2)#5	3.229(3)	S(1)#4-Ba(1)-S(1)	152.85(7)
Ba(1)-S(1)	3.313(3)	S(2)-Ba(1)-S(1)	71.53(5)
Ba(1)-S(1)#5	3.313(3)	S(2)#5-Ba(1)-S(1)	75.30(6)
Cu(1)-S(2)#9	2.311(2)	S(2)#1-Ba(1)-S(1)#5	72.17(5)
Cu(1)-S(1)	2.316(2)	S(2)#2-Ba(1)-S(1)#5	136.92(5)
Cu(1)-S(2)#2	2.416(2)	S(1)#3-Ba(1)-S(1)#5	152.85(7)
Cu(1)-S(1)#3	2.423(3)	S(1)#4-Ba(1)-S(1)#5	65.09(3)
Sn(1)-S(1)#14	2.386(2)	S(2)-Ba(1)-S(1)#5	75.30(6)
Sn(1)-S(2)#14	2.389(2)	S(2)#5-Ba(1)-S(1)#5	71.53(5)
S(2)#1-Ba(1)-S(2)#2	132.11(8)	S(1)-Ba(1)-S(1)#5	116.99(7)
S(2)#1-Ba(1)-S(1)#3	88.53(6)	S(2)#9-Cu(1)-S(1)	134.06(9)
S(2)#2-Ba(1)-S(1)#3	70.23(6)	S(2)#9-Cu(1)-S(2)#2	99.33(6)
S(2)#1-Ba(1)-S(1)#4	70.23(6)	S(1)-Cu(1)-S(2)#2	108.39(8)
S(2)#2-Ba(1)-S(1)#4	88.53(6)	S(2)#9-Cu(1)-S(1)#3	115.15(9)
S(1)#3-Ba(1)-S(1)#4	126.71(7)	S(1)-Cu(1)-S(1)#3	95.79(6)
S(2)#1-Ba(1)-S(2)	144.61(5)	S(2)#2-Cu(1)-S(1)#3	99.60(9)
S(2)#2-Ba(1)-S(2)	68.16(6)	S(1)#14-Sn(1)-S(1)	105.19(12)
S(1)#3-Ba(1)-S(2)	126.73(5)	S(1)#14-Sn(1)-S(2)#14	106.41(8)
S(1)#4-Ba(1)-S(2)	83.79(5)	S(1)-Sn(1)-S(2)#14	117.03(7)
S(2)#1-Ba(1)-S(2)#5	68.16(6)	S(1)#14-Sn(1)-S(2)	117.03(7)
S(2)#2-Ba(1)-S(2)#5	144.61(5)	S(1)-Sn(1)-S(2)	106.41(8)
S(1)#3-Ba(1)-S(2)#5	83.79(5)	S(2)#14-Sn(1)-S(2)	105.32(11)

#1 -y+1,x-y,z-1/3	#2 x-y,-y+1,-z+1/3	#3 y-1,x,-z
#4 x,y-1,z	#5 y,x,-z	#6 x+1,y,z
#7 y,x+1,-z	#8 -y+1,x-y+1,z-1/3	#9 x-1,y,z
#10 -x+y,-x+1,z+1/3	#11 x,y+1,z	#12 x-y+1,-y+1,-z+1/3
#13 -x+y+1,-x+1,z+1/3	#14 x-y+1,-y+2,-z+1/3	

Table S2(e) Bond lengths (Å) and angles (°) for BaCu₂SnSe₄.

() U		· · · · · · · · · · · · · · · · · · ·	
Ba(1)-Se(3)#1	3.311(2)	Se(2)#3-Ba(1)-Se(1)#5	147.11(4)
Ba(1)-Se(3)	3.311(2)	Se(1)#4-Ba(1)-Se(1)#5	128.05(7)
Ba(1)-Se(2)#2	3.323(2)	Se(3)#1-Ba(1)-Se(3)#2	152.57(4)
Ba(1)-Se(2)#3	3.323(2)	Se(3)-Ba(1)-Se(3)#2	67.25(6)
Ba(1)-Se(1)#4	3.375(2)	Se(2)#2-Ba(1)-Se(3)#2	73.02(4)
Ba(1)-Se(1)#5	3.375(2)	Se(2)#3-Ba(1)-Se(3)#2	76.70(4)
Ba(1)-Se(3)#2	3.409(2)	Se(1)#4-Ba(1)-Se(3)#2	135.70(2)
Ba(1)-Se(3)#3	3.409(2)	Se(1)#5-Ba(1)-Se(3)#2	74.32(4)
Cu(1)-Se(3)#6	2.431(3)	Se(3)#1-Ba(1)-Se(3)#3	67.25(6)
Cu(1)-Se(2)#3	2.4528(19)	Se(3)-Ba(1)-Se(3)#3	152.57(4)
Cu(1)-Se(3)#2	2.492(2)	Se(2)#2-Ba(1)-Se(3)#3	76.70(4)
Cu(1)-Se(1)	2.546(2)	Se(2)#3-Ba(1)-Se(3)#3	73.02(4)
Sn(1)-Se(3)#7	2.5266(18)	Se(1)#4-Ba(1)-Se(3)#3	74.32(4)
Sn(1)- Se(2)	2.545(2)	Se(1)#5-Ba(1)-Se(3)#3	135.70(2)
Sn(1)- Se(1)	2.509(3)	Se(3)#6-Cu(1)-Se(3)#2	98.23(6)
Sn(1)- Se(3)	2.5266(18)	Se(2)#3-Cu(1)-Se(3)#2	115.30(7)
Se(3)#1-Ba(1)-Se(3)	121.00(7)	Se(3)#6-Cu(1)-Se(1)	110.83(6)
Se(3)#1-Ba(1)-Se(2)#2	83.49(4)	Se(2)#3-Cu(1)-Se(1)	96.01(8)
Se(3)-Ba(1)-Se(2)#2	128.24(3)	Se(3)#2-Cu(1)-Se(1)	101.21(7)
Se(3)#1-Ba(1)-Se(2)#3	128.24(3)	Se(3)#6-Cu(1)-Cu(1)#7	105.04(4)
Se(3)-Ba(1)-Se(2)#3	83.49(4)	Se(2)#3-Cu(1)-Cu(1)#7	56.64(4)
Se(2)#2-Ba(1)-Se(2)#3	118.23(8)	Se(3)#2-Cu(1)-Cu(1)#7	153.10(4)
Se(3)#1-Ba(1)-Se(1)#4	71.23(5)	Se(1)-Cu(1)-Cu(1)#7	58.01(4)
Se(3)-Ba(1)-Se(1)#4	83.71(5)	Se(1)-Sn(1)-Se(3)#7	119.06(4)
Se(2)#2-Ba(1)-Se(1)#4	147.11(4)	Se(1)-Sn(1)-Se(3)	119.06(4)
Se(2)#3-Ba(1)-Se(1)#4	67.04(6)	Se(3)#7-Sn(1)-Se(3)	103.15(8)
Se(3)#1-Ba(1)-Se(1)#5	83.71(5)	Se(1)-Sn(1)-Se(2)	105.11(6)
Se(3)-Ba(1)-Se(1)#5	71.23(5)	Se(3)#7-Sn(1)-Se(2)	104.34(5)
Se(2)#2-Ba(1)-Se(1)#5	67.04(6)	Se(3)-Sn(1)-Se(2)	104.34(5)

_					· ·				
S	Symmetry	transfo	rmation	s used to	generate	equi	valen	t atoms:	

#1 -x,-y+1,z	#2 -x,-y+1/2,z-1/2	#3 x,y+1/2,z-1/2
#4 x,y+1/2,z+1/2	#5 -x,-y+1/2,z+1/2	#6 x,y,z-1
#7 -x+1/2,y,z	#8 x,y-1/2,z-1/2	#9 -x+1/2,y-1/2,z-1/2
#10 x,y-1/2,z+1/2	#11 -x+1/2,y-1/2,z+1/2	#12 x,y,z+1

Compounds	SHG coefficients (pm/V)		
	Total	VH	VE
BaCu ₂ SiSe ₄	$d_{12} = 4.18$	36.53%	63.47%
$BaCu_2GeS_4$	$d_{12} = 0.28$	48.46%	51.54%
BaCu ₂ GeSe ₄	$d_{12} = 5.62$	43.37%	56.63%
$BaCu_2SnS_4$	$d_{12} = 12.09$	90.01%	9.99%
$BaCu_2SnSe_4$	$d_{12} = 1.45$	47.72%	52.28%

Fig. S1(a) Powder XRD patterns of BaCu₂SiSe₄.

Fig. S1(b) Powder XRD patterns of $BaCu_2GeS_4$.

Table S3 Calculated NLO SHG coefficients and percentage of VH (Virtual-Hole) and VE (Virtual-Electron) in BaCu₂ $M^{IV}Q_4$ ($M^{IV} = Si$, Ge, and Sn; Q = S, Se).

Fig. S1(c) Powder XRD patterns of BaCu₂GeSe₄.

Fig. S1(d) Powder XRD patterns of BaCu₂SnS₄.

Fig. S1(e) Powder XRD patterns of BaCu₂SnSe₄.

Fig. S2(a) The IR spectrum of as-synthesized BaCu₂SiSe₄.

Fig. S2(b) The IR spectrum of as-synthesized BaCu₂GeS₄.

Fig. S2(c) The IR spectrum of as-synthesized BaCu₂GeSe₄.

Fig. S2(d) The IR spectrum of as-synthesized BaCu₂SnS₄.

Fig. S2(e) The IR spectrum of as-synthesized BaCu₂SnSe₄.

Fig. S3(a) Absorption spectrum of $BaCu_2SiSe_4$. The inset diagram is the experimental band gap.

Fig. S3(b) Absorption spectrum of $BaCu_2GeS_4$. The inset diagram is the experimental band gap.

Fig. S3(c) Absorption spectrum of BaCu₂GeSe₄. The inset diagram is the experimental band gap.

Fig. S3(d) Absorption spectrum of $BaCu_2SnSe_4$. The inset diagram is the experimental band gap.

Fig. S4 SHG response for title compounds in different particle sizes (AgGaS₂ as the reference).

Fig. S5(a) The electronic structure of BaCu₂SiSe₄.

Fig. S5(b) The electronic structure of $BaCu_2GeS_4$.

Fig. S5(d) The electronic structure of BaCu₂SnSe₄.

Fig. S6(c) The PDOS of BaCu₂GeSe₄.

Fig. S6(d) The PDOS of BaCu₂SnSe₄.

(a)

Fig. S7(a) SHG density of BaCu₂GeS₄.

Fig. S7(b) SHG density of BaCu₂GeSe₄.

Fig. S7(c) SHG density of BaCu₂SiSe₄.

(d)

Fig. S7(d) SHG density of BaCu₂SnSe₄.