Supporting Information

The application of a UHPLC system to study the formation of various chemical species by compounds undergoing efficient self-aggregation and to determine the homodimerization constants (K_{DM}) with values in the high range of 10⁶-10¹⁰ M⁻¹

Magdalena Hetmańska*^[a] and Andrzej Maciejewski*^[a,b]

^a Photochemistry and Spectroscopy Laboratory, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland

^b Centre for Ultrafast Spectroscopy, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland

Table S1. The effect of K_{DM} value and concentration of the studied compound on the concentration of monomer (M) and dimer (DM).

К _{DM} [М ⁻¹]	c [M]	с_{DM} [M]	с _м [М]	c _M /c _{DM}	с _М [%]	с _{DM} [%]
	2.01	1.0	0.01	0.01	1.01	98.99
	2.0316.10-1	1.10-1	0.00316	0.0316	3.06	96.94
104	2.1.10-2	1.10-2	0.001	0.1	9.1	90.9
	2.316.10-3	1.10-3	0.000316	0.316	24.01	75.99
	3.10-4	1.10-4	1.10-4	1.0	50.0	50.0
	5.16.10-5	1.10-5	3.16.10-5	3.16	75.96	24.04
	1.2.10-5	1.10-6	1.10-5	10.0	90.9	9.1
	3.6.10-6	1.10-7	3.16.10-6	31.6	96.93	3.07
	1.02.10-6	1.10-8	1.10-6	100.0	99.0	1.0

	2.01.10-1	1.10-1	1.10-3	0.01	0.99	99.01
	2.01.10	1.10	1.10 2	0.01	0.99	99.01
	2.0316.10-2	1.10-2	3.16.10-4	0.0316	3.06	96.94
10 ⁵	2.1.10-3	1.10-3	1.10-4	0.1	9.1	90.09
	2.316.10-4	1.10-4	3.16.10-5	0.316	24.01	75.99
	3.10-5	1.10-5	1.10-5	1.0	50.0	50.0
	5.16.10-6	1.10-6	3.16.10-6	3.16	75.96	24.04
	1.2.10-6	1.10-7	1.10-6	10.0	90.9	9.1
	3.36.10-7	1.10-8	3.16.10-7	31.6	96.93	3.07
	1.02.10-7	1.10-9	1.10-7	100.0	99.0	1.0
	2.01.10-2	1.10-2	1.10-4	0.01	1.01	98.99
	2.03.10-3	1.10-3	3.16.10-5	0.0316	3.06	96.94
106	2.1.10-4	1.10-4	1.10-5	0.1	9.1	90.9
	2.316.10-5	1.10-5	3.16.10-6	0.316	24.0	76.0
	3.0.10-6	1.10-6	1.10-6	1.0	50.0	50.0
	5.16.10-7	1.10-7	3.16.10-7	3.16	75.96	24.04
	1.2.10-7	1.10-8	1.10-7	10.0	90.9	9.1
	3.36.10-8	1.10-9	3.16.10-8	31.6	96.93	3.07
	2.01.10-3	1.10-3	1.10-5	0.01	1.01	98.99
	2.0316.10-4	1.10-4	3.16.10-6	0.0316	3.06	96.94
107	2.1.10-5	1.10-5	1.10-6	0.1	9.1	90.9

		1	1		-	
	2.316.10-6	1.10-6	3.16.10-7	0.316	24.01	75.99
	3.0.10-7	1.10-7	1.10-7	1.0	50.0	50.0
	5.16.10-8	1.10-8	3.16.10-8	3.16	75.96	24.04
	1.2.10-8	1.10-9	1.10-8	10.0	90.9	9.1
	3.36.10-9	1.10-10	3.16.10-9	31.6	96.93	3.07
	2.01.10-4	1.10-4	1.10-6	0.01	1.01	98.99
	2.0317.10-5	1.10-5	3.16.10-7	0.0316	3.06	96.94
10 ⁸	2.1.10-6	1.10-6	1.10-7	0.1	9.1	90.9
	2.316.10-7	1.10-7	3.16.10-8	0.316	24.01	75.99
	3.10-8	1.10-8	1.10-8	1.0	50.0	50.0
	5.16.10-8	1.10-9	3.16.10-9	3.16	75.96	24.04
	1.2.10-9	1.10-10	1.10-9	10.0	90.0	10.0
	2.01.10-5	1.10-5	1.10-7	0.01	1.01	98.99
	2.03.10-6	1.10-6	3.16.10-8	0.03	3.06	96.94
10 ⁹	2.1.10-7	1.10-7	1.10-8	0.1	9.1	90.9
	2.316.10-8	1.10-8	3.16.10-9	0.3	23.08	76.92
	3.10-9	1.10-9	1.10-9	1.0	50.0	50.0
	5.16.10-10	1.10-10	3.16.10-10	3.16	75.96	24.04
	2.01.10-6	1.10-6	1.10-8	0.01	1.01	98.99

10 ¹⁰						
	2.0317.10-7	1.10-7	3.16.10-9	0.0316	3.06	96.94
	2.1.10-8	1.10-8	1.10-9	0.1	9.1	90.9
	2.316.10-9	1.10-9	3.16.10-10	0.316	24.01	75.99
	3.10-10	1.10-10	1.10-10	1.0	50.0	50.0
	5.16.10-11	1.10-11	3.16.10-11	3.16	75.96	24.04

Table S2. The dependence of the monomer and dimer concentration on K_{DM} (in the range from 1×10^5 to 1×10^{10} M⁻¹), calculated for concentrations of C120 in ACN investigated in this work.

c _{C120}	c	K _{DM} =1 x10 ⁵	K _{DM} =1 x10 ⁶	K _{DM} =1 x10 ⁷	K _{DM} =1 x10 ⁸	K _{DM} =1 x10 ⁹	K _{DM} =1 x10 ¹⁰
[M]	[M]	[M ⁻¹]					
1.9x10 ⁻⁸	с _{DM} (х10 ⁻⁸)	0.0035	0.034	0.216	0.572	0.81	0.902
	с _м (х10 ⁻⁸)	1.87	1.844	1.47	0.756	0.285	0.095
	c _M /c _{DM}	534.3	54.24	6.81	1.32	0.35	0.105
	с _{DM} (х10 ⁻⁸)	0.0835	0.644	2.27	3.7	4.32	4.54
9.3x10 ⁻⁸	с _м (х10 ⁻⁸)	9.14	8.02	4.76	1.92	0.657	0.213
	c _M /c _{DM}	109.4	12.45	2.1	0.52	0.15	0.047
	с _{DM} (х10 ⁻⁷)	0.86	2.85	4.44	5.15	5.4	5.46

c _M (x10 ⁻⁷)	9.27	5.34	2.107	0.718	0.23	0.074
c _M /c _{DM}	10.78	1.87	0.475	0.139	0.0426	0.0135

Table S3. The effect of C120 concentration on the percentage of monomer (M) and trimer (TM) for trimerization constant $K_{TM} = 1 \times 10^{17} M^{-2}$.

	c _M	c _{TM}	c _M /c _{TM}	c _M /c _{DM}
с _{С120}	[%]	[%]		[a]
[M]	cal	cal	cal	exp
1.1x10 ⁻⁶	4.1	95.9	0.04	0.04
9.3x10 ⁻⁸	18.7	81.3	0.23	0.12
1.9x10 ⁻⁸	42.4	57.6	0.74	0.35

[a] – the values taken from Table 5

Table S4. The dependence of the dimer concentration on K_{DM} (in the range from 0.5×10^9 to 3.0×10^9 M⁻¹), calculated for concentrations of C120 in ACN investigated in this work.

		K _{DM} [M ⁻¹]							
c _{C120} [M]	0.5x10 ⁹	1.0x10 ⁹	1.5x10 ⁹	2.0x10 ⁹	2.5 x10 ⁹	3.0x10 ⁹			
				c _{DM} [M]					
1.08x10 ⁻⁶	0.523x10 ⁻⁶	0.528x10 ⁻⁶	0.531x10 ⁻⁶	0.527x10 ⁻⁶	0.533x10 ⁻⁶	0.534x10 ⁻⁶			
9.34x10 ⁻⁸	4.21x10 ⁻⁸	4.34x10 ⁻⁸	4.40x10 ⁻⁸	4.435x10 ⁻⁸	4.46x10 ⁻⁸	4.477x10 ⁻⁸			
1.88x10 ⁻⁸	0.747x10 ⁻⁸	0.8x10 ⁻⁸	0.823x10 ⁻⁸	0.838x10 ⁻⁸	0.848x10 ⁻⁸	0.856x10 ⁻⁸			

Table S5. The dependence of the dimer concentration on K_{DM} (in the range from 3.0×10^9 to 11.0×10^9 M⁻¹), calculated for concentrations of C120 in 1-chlorobutane investigated in this work.

	К _{DM} [М ⁻¹]								
c _{C120} [M]	3.0x10 ⁹	5.0x10 ⁹ 7.0x10 ⁹		9.0x10 ⁹	11.0x10 ⁹				
	с _{DM} [М]								
6.8x10 ⁻⁹	2.91x10 ⁻⁹	3.01x10 ⁻⁹	3.07x10 ⁻⁹	3.107x10 ⁻⁹	3.133x10 ⁻⁹				
3.4x10 ⁻⁸	1.59x10 ⁻⁸	1.61x10 ⁻⁸	1.625x10 ⁻⁸	1.63x10 ⁻⁸	3.164x10 ⁻⁸				
8.5x10 ⁻⁷	4.189x10 ⁻⁷	4.205x10 ⁻⁷	4.210x10 ⁻⁷	4.217x10 ⁻⁷	4.221x10 ⁻⁷				

Table S6. Relative concentrations of the dimer c_{DM} (rel) depeding on K_{DM} value (in the range from 3.0×10^9 to 11.0×10^9 M⁻¹)calculated for concentrations of C120 in 1-chlorobutane investigated in this work.

		К _{DM} [М ⁻¹]						
c _{C120} [M]	C C120(rel)	3.0x10 ⁹	5.0x10 ⁹	7.0x10 ⁹	9.0x10 ⁹	11.0x10 ⁹		
		CDM (rel)						
6.8x10 ⁻⁹	1.0	1.0	1.0	1.0	1.0	1.0		
3.4x10 ⁻⁸	5.0	5.45	5.35	5.29	5.25	5.23		
8.5x10 ⁻⁷	125	144.1	139.7	137.1	135.7	134.7		

Table S7. Absorbance values at peak maximum for monomer and dimer, calculated for selected concentrations of the studied compound for which $K_{DM} = 1.10^7 \text{ M}^{-1}$

c	Α ^{λ=300}	Α ^{λ=340}	c _M	c _{DM}	c _M /c _{DM}	A ^{λ=300} /	S/N	S/N
[M]			[M]	[M]		$/A^{\lambda=340}$	[a]	[b]
2.1x10 ⁻⁶	0.0116	0.0734	0.3x10 ⁻⁶	0.9x10 ⁻⁶	0.34	0.16	610	3670
2.0x10 ⁻⁷	0.0030	0.0049	0.77x10 ⁻⁷	0.6x10 ⁻⁷	1.29	0.61	155	245
1.9x10 ⁻⁸	0.00057	0.00018	1.47x10 ⁻⁸	0.22x10 ⁻⁸	6.72	3.17	30	9

assumed values: $\varepsilon_{M}^{300}=15500 \text{ M}^{-1}\text{cm}^{-1}$ (like for the monomer C120) and $\varepsilon_{DM}^{340}=32600 \text{ M}^{-1}\text{cm}^{-1}$ (like for the dimer C120), l=2.5 cm, like in the measurements for C120 in ACN carried out using the UHPLC-PDA-FL system; [a] for $A^{\lambda=300}$; [b] for $A^{\lambda=340}$; absorbance measurement error $\Delta A = \pm 2 \times 10^{-5}$

c [M]	Α ^{λ=300}	$A^{\lambda=340}$	с _м [М]	с _{DM} [M]	c _M /c _{DM}	$\frac{A^{\lambda=300}}{A^{\lambda=340}}$	S/N [a]	S/N [b]
2.1x10 ⁻⁶	0.0039	0.082	1x10 ⁻⁷	1x10 ⁻⁶	0.11	0.05	[a] 195	4100
1.9x10 ⁻⁷	0.0011	0.0069	0.29x10 ⁻⁷	0.85x10 ⁻⁷	0.34	0.16	55	345
1.9x10 ⁻⁸	0.00029	0.00047	0.76x10 ⁻⁸	0.572x10 ⁻⁸	1.31	0.62	14.5	23.5

Table S8. Absorbance values at peak maximum for monomer and dimer, calculated for selected concentrations of the studied compound for which $K_{DM} = 1.10^8 \text{ M}^{-1}$.

assumed values: $\varepsilon_{M}^{300}=15\,500\,M^{-1}cm^{-1}$ (like for the monomer C120) and $\varepsilon_{DM}^{340}=32\,600\,M^{-1}cm^{-1}$ (like for the dimer C120), l=2.5 cm, like in the measurements for C120 in ACN carried out using the UHPLC-PDA-FL system; [a] for $A_M^{\lambda=300}$; [b] for $A_{DM}^{\lambda=340}$; absorbance measurement error $\Delta A = \pm 2x10^{-5}$ Calculations of $A^{\lambda=300}$ and $A^{\lambda=340}$ presented in Tables S4 and S5 were performed for identical or very similar concentrations as those studied for C120 in ACN. The same shape and width of chromatographic peaks of M and DM were assumed as those obtained using the UHPLC-PDA-FL system for C120 in ACN and the same value of $\varepsilon_M^{300}=15\,500\,M^{-1}cm^{-1}$ as that for M and $\varepsilon_{DM}^{340}=32\,600\,M^{-1}cm^{-1}$ that for DM of the studied C120 in ACN. Due to such an approach, the calculated values of $A^{\lambda=300}$ and $A^{\lambda=340}$, as well as the values of the ratio S/N= $A^{\lambda=300}/\Delta A$ for M and the values of the ratio S/N= $A^{\lambda=340}/\Delta A$ for DM can be directly compared with experimental values of $A^{\lambda=300}$ and $A^{\lambda=340}$, obtained for C120 in ACN, for which $K_{DM}=1.5x10^9\,M^{-1}$, see Table 1 and Table 5 in the paper.

Table S9. Comparison of dimer emission intensity for injected samples of C120 ($c = 3x10^{-8}$ M) in ACN, with injection volumes of 3 µl and 10 µl (see Fig. S3).

	P _{DM}		
λ _{em}	V=10µl	V=3µl	P _{DM} (V=10μl)/P _{DM} (V=3μl)
395 nm	93490	27880	3.35
400 nm	114630	34930	3.28
405 nm	131620	40140	3.28
410 nm	145720	44682	3.26

 $\lambda_{ex} = 250 \text{ nm}$

Figure S1. Experimental absorption chromatograms of coumarin-120 (C120) in ACN at the dye concentration of 9.3×10^{-8} M measured at 340 nm (1.20 – 1.43 min) and at 310 nm (1.43 – 1.70 min), repeated several times (flow rate: 0.25 ml min⁻¹).

Figure S2. Experimental emission chromatograms of coumarin-120 (C120) in ACN at the dye concentration of 9.3×10^{-8} M (flow rate: 0.25 ml min⁻¹).

Figure S3. Emission chromatograms of C120 (c = $3x10^{-8}$ M) in ACN, for injected samples with volumes of 3 µl and 10 µl, (see Tab. S9).