Synthetic studies en route to the first total synthesis of a naturally occurring quinone from *Acorus gramineus*, *iso*-merrilliaquinone, *iso*-magnoshinin and 2-*epi*-3, 4-dihydro magnoshinin

Dileep Kumar, Oindreela Das, Manvendra Singh Kaurav and Tabrez Khan*

Organic Synthesis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India.

Table of Contents

i)	General Information	S2
ii)	Experimental procedure for the synthesis of 16, 17, 25 and 26	S2-S4
iii)	Attempted synthesis of 12/13 from 18.	S4
iv)	¹ H NMR comparison of natural gramineusquinone B with that of synthetic gramineusquinone B and the desmethyl derivative of the natural product	S5
v)	¹³ C NMR comparison of natural gramineusquinone B with that of synthetic gramineusquinone B and the desmethyl derivative of the natural product	S6
vi)	Crystal Information for compound 14	S7-S9
iv)	Copies of NMR spectral data for all the compounds	S10-S32

General Information

General: All the reagents were purchased from Sigma-Aldrich and other commercial suppliers and used without further purification. While most of the desired solvents supplied by commercial suppliers were dried using the standard drying procedures.¹ All nonaqueous reactions were executed under nitrogen atmosphere. The ¹H and ¹³C NMR spectra were recorded on 400 and 100 MHz Bruker spectrometer respectively using TMS signal as an internal standard. The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, p = quintet/pentet, td = triplet of doublet, and m = multiplet. The chemical shifts are reported as δ values (ppm) and the coupling constants (*J*) values are reported in Hz. Reactions monitoring were done using precoated SiO₂-gel GF254 glass TLC plates while spot visualizations were done using column chromatography with 100-200 mesh size SiO₂-gel as the stationary phase.

(E)-Ethyl 3-(2, 4, 5-trimethoxyphenyl) acrylate (16): To a stirred solution of 2, 4, 5-trimethoxy-

benzaldehyde **15** (5.6 g, 28.57 mmol) in benzene (8 mL) was added carboxymethylene triphenylphosphorane (14.93 g, 42.86 mmol) and the reaction was then refluxed for 2 h. On complete consumption of starting material and on indication of formation of a new spot by the TLC analysis, the reaction was worked up by removing the solvent under reduced pressure and

then subjecting the resultant residue to SiO₂ gel column chromatographic purification using hexane/ethyl acetate (4:1) as the eluent to arrive at **16** (*E*-isomer) (6.58 g, 24.709 mmol, 86% yield) in the form of a white solid. IR (neat): v_{max} 2838, 1702, 1608, 1515, 1467, 1297, 1256, 1213, 1168, 1032 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 16.1 Hz, 1H), 7.01 (s, 1H), 6.50 (s, 1H), 6.37 (d, *J*=16.1 Hz, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 3.93 (s, 3H), 3.87 (s, 3H), 3.86 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.76 , 153.81 , 151.99 , 143.15 , 139.45 , 115.76 , 114.87, 110.73, 96.77, 60.21 , 56.35, 56.30, 56.02, 14.39.

Ref:

1. Armarego, D. L. F.; Perrin, D. D. Purification of laboratory Chemicals IV Edition

(E)-2-methyl-4-(2, 4, 5-trimethoxyphenyl)but-3-en-2-ol (17): To a solution of 16 (6.58 g, 24.74

mmol) in dry THF (4 mL) at -78 °C was added 3.0 M solution of methyl lithium in diethoxy methane (82.4 mL, 247.36 mmol). The reaction mixture was allowed to warm to rt and continued stirring at same temperature for 4.5 h until complete consumption of starting material and formation of a new spot was indicated by the TLC analysis. The reaction was quenched with saturated aq. NH₄Cl solution followed by extraction with ethyl acetate (4 × 40 mL).

Drying of the organic phase over Na₂SO₄ and then removal of solvent under reduced pressure gave an oily residue which was subjected to column chromatography to access pure **17** (4.36 g, 17.280 mmol, 70% yield) as a colorless oil. IR (neat): v_{max} 2963, 2935, 2834, 1608, 1509, 1465, 1260, 1206, 1039, 804 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ) δ 6.98 (s, 1H), 6.86 (d, *J* = 16.4 Hz, 1H), 6.50 (s, 1H), 6.24 (d, *J* = 16.4 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 1.44 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.37, 149.38, 143.37, 135.82, 120.58, 117.58, 109.72, 97.75, 71.31, 56.63, 56.53, 56.10, 29.70 (2C).

(*E*)-Ethyl 3-(2, 4, 5-trimethoxyphenyl) acrylate (25): To a stirred solution of 2, 4, 5-trimethoxybenzaldehyde 15 (600 mg, 3.06 mmol) in benzene (8 mL) was added carboxymethylene triphenylphosphorane (1.66 g, 4.591 mmol) and the reaction was then refluxed for 3 h. On complete

consumption of starting material and on indication of formation of a new spot by the TLC analysis, the reaction was worked up by removing the solvent under reduced pressure and then subjecting the resultant residue to SiO_2 gel column chromatographic purification using hexane/ethyl acetate (4:1) as the eluent to

OMe arrive at **25** (*E*-isomer) (760 mg, 2.711 mmol, 89% yield) in the form of a yellow solid. [TLC profile: $R_f = 1.36$ (petroleum ether/ethyl acetate 7:3, UV detection)]. IR (neat): $v_{max}2937$, 2835, 1700, 1608, 1514, 1465, 1250, 1214, 1032 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 1.2 Hz, 1H), 6.89 (s, 1H), 6.53 (s, 1H), 4.26 (q, J = 7.2 Hz, 2H), 3.92 (s, 3H), 3.84 (s, 6H), 2.08 (d, J = 1.2 Hz, 3H), 1.34 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.82, 152.78, 150.33, 142.48, 134.13, 126.94, 116.38, 113.91, 96.97, 60.67, 56.68, 56.38, 56.05, 14.37, 14.35.

(E)-2-methyl-4-(2, 4, 5-trimethoxyphenyl)but-3-en-2-ol (26): To a solution of 25 (3.49 g, 12.46

mmol) in dry THF (7 mL) at -78 °C was added 3.1 M solution of methyllithium in diethoxymethane (40.3 mL, 124.89 mmol). The reaction mixture was allowed to warm to rt and continued stirring at same temperature for 4 h until complete consumption of starting material and formation of a new spot was indicated by the TLC analysis. The reaction was quenched with saturated aq. NH₄Cl solution followed by extraction with ethyl acetate (4×40

mL). Drying of the organic phase over Na₂SO₄ and then removal of solvent under reduced pressure gave an oily residue which was subjected to column chromatography to access pure **26** (2.98 g, 11.189 mmol, 89% yield) as a colorless oil. [TLC profile: $R_f = 1.5$ (petroleum ether/ethyl acetate 7:3, UV detection)]. IR (neat): v_{max} 2972, 1608, 1512, 1465, 1397, 1317, 1207, 1124, 1035, 880 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.74 (s, 1H), 6.60 (s, 1H), 6.51 (s, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 3.77 (s, 3H),1.84 (d, *J* = 0.8 Hz, 3H), 1.44 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.70, 148.39, 143.75, 142.51, 118.95, 117.81, 114.50, 97.82, 73.94, 56.68, 56.54, 56.12, 29.04 (2C), 14.58.

Attempted synthesis of 12/13 from 18:

Position	Natural	Synthetic	Desmethyl
	gramineusquinone B	gramineusquinone	gramineusquinone B
	(3)	B (3)	(19)
1			
2			
3	6.08 (s)	6.06 (s)	6.10 (s)
4			
5			
6			
7	7.98 (s)	7.96 (s)	7.94 (s)
8			
9	2.47 (s)	2.45 (s)	2.48 (s)
4-OMe	3.82 (s)	3.80 (s)	3.84 (s)
1'			
2'			
3'	6.65 (s)	6.63 (s)	6.67 (s)
4'			
5'			
6'	6.43 (s)	6.40 (s)	6.56 (s)
7'			
8'			7.31 (s)
9'	2.03 (s)	2.01 (s)	
2'-OMe	3.67 (s)	3.65 (s)	3.65 (s)
4'-OMe	3.97 (s)	3.95 (s)	3.93 (s)
5'-OMe	3.73 (s)	3.76 (s)	3.83 (s)

¹H NMR comparison of natural with that of synthetic and the desmethyl derivative

¹³C NMR comparison of natural with that of synthetic and the desmethyl derivative

Position	Natural	Synthetic	Desmethyl
	e B (3)	e B (3)	e B (19)
1	130.8	130.7	133.0
2	185.5	185.5	185.4
3	108.0	108.0	108.3
4	160.8	160.8	161.1
5	179.8	179.8	179.6
6	127.0	127.0	127.0
7	127.2	127.2	126.5
8	143.7	143.7	144.4
9	21.5	21.5	21.8
4-OMe	56.6	56.6	56.6
1'	120.3	120.4	121.4
2'	150.4	150.4	150.6
3'	97.8	97.9	97.4
4'	148.9	148.9	149.2
5'	143.6	143.6	143.0
6'	112.6	112.7	113.0
7'	139.4	139.4	139.7
8'	143.8	143.8	137.9
9'	16.9	16.9	
2'-0Me	56.1	56.1	56.2
4'-0Me	56.4	56.4	56.4
5'-OMe	56.2	56.2	56.30

Formula	$C_{22} H_{24} O_6$
Fw	384.41
radiation	ΜοΚα
wavelength (Å)	0.71073
temp./ K	273(2)
cryst system	triclinic
space group	P -1
a/Å	7.5036(12)
b/Å	11.2036(17)
c/Å	12.4155(19)
a(deg)	80.842(4)
β(deg)	73.658(4)
y(deg)	86.435(4)
V/ Å ³	988.6(3)
Crystal size (mm)	0.7 x 0.03 x 0.02
Ζ	2
μ / mm ⁻¹	0.094
$D_{ m calcd}$ / g cm ⁻³	1.291
F(000)	408
θ range	2.332 - 27.633
Data/restraints/parameters	3751/0/259
R1,wR2 [I>2σ(I)]	0.0606
R1,wR2 (all data)	0.1941
Largest diff. peak hole (eÅ- ³)	0.17, -0.24

CRYSTAL INFORMATION FOR COMPOUND 14

Bond Lengths			
O6 C17	1.369(3)	C14 C15	1.391(4)
O6 C21	1.418(3)	C14 C8	1.527(4)
O5 C19	1.378(3)	O3 C4	1.228(3)
O5 C20	1.388(4)	C6 C5	1.332(4)
O2 C7	1.209(3)	C6 C7	1.476(4)
O4 C22	1.365(4)	C6 C8	1.500(4)
O4 C16	1.368(3)	C17 C18	1.375(4)
O1 C2	1.347(4)	C17 C16	1.393(4)
O1 C1	1.453(4)	C8 C9	1.518(4)
C14 C19	1.387(4)	C16 C15	1.373(4)
C19 C18	1.387(4)	C7 C2	1.504(4)
C5 C4	1.487(4)	C5 C11	1.490(4)
C9 C10	1.325(4)	C9 C13	1.513(4)
C2 C3	1.318(4)	C4 C3	1.445(4)
C10 C11	1.497(4)	C10 C12	1.506(4)
	Bond	Angles	
C17 O6 C21	118.0(2)	C15 C14 C8	120.4(2)
C19 O5 C20	117.1(3)	C5 C6 C7	119.9(3)
C22 O4 C16	119.8(2)	C5 C6 C8	123.1(3)
C2 O1 C1	116.0(3)	C7 C6 C8	117.0(2)
C19 C14 C15	117.1(3)	O6 C17 C18	124.6(3)
C19 C14 C8	122.5(2)	O6 C17 C16	115.7(2)
C18 C17 C16	119.7(3)	C6 C8 C9	113.1(2)
C6 C8 C14	110.5(2)	C9 C8 C14	109.8(2)
O4 C16 C15	124.9(3)	O4 C16 C17	116.3(3)

C15 C16 C17	118.8(3)	O5 C19 C14	117.2(2)
O5 C19 C18	121.7(2)	C14 C19 C18	121.0(3)
C17 C18 C19	120.4(3)	C16 C15 C14	122.8(3)
O2 C7 C6	121.6(3)	O2 C7 C2	120.8(3)
C6 C7 C2	117.5(3)	C6 C5 C4	121.0(3)
C6 C5 C11	122.8(3)	C4 C5 C11	116.3(3)
C10 C9 C13	123.3(3)	C10 C9 C8	123.0(3)
C13 C9 C8	113.6(3)	C3 C2 O1	127.4(3)
C3 C2 C7	121.3(3)	O1 C2 C7	111.3(3)
O3 C4 C3	121.6(3)	O3 C4 C5	119.3(3)
C3 C4 C5	119.1(3)	C9 C10 C11	122.6(3)
C9 C10 C12	124.7(3)	C11 C10 C12	112.8(3)
C5 C11 C10	114.7(2)	C2 C3 C4	120.5(3)

2D NMR spectra for 18

i) COSY spectrum

ii) NOESY spectrum:

iii) HMQC spectrum:

iv) HMBC spectrum:

(ii) NOESY spectrum:

< 7.81
 < 7.81
 < 7.81
 < 7.81

 <

$<_{2.08}$

00.0----

-7.26-6.63-6.66-6.66-6.66-6.06-6.06-2.45-2.45-2.45-2.45-2.01

