Electronic Supplementary Information (ESI)

A fluorescent photochromic diarylethene based on naphthalic anhydride with

strong solvatochromism

Shangjun Chen *^a, Xin Li ^b, and Liwen Song ^c

^a Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China. E-mail: jshchen@shnu.edu.cn

^b Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.

^c Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Collaborative Innovation Center for Coal Based Energy (i-CCE), School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.

L

Contents

Fig. S1	¹ H NMR signal changes of BTE-O before and after 365 nm photo-irradiation in C_6D_6 (2.35×10 ⁻² M)	.1
Fig. S2	Simulated absorption spectra of BTE-O and c-BTE-O in cyclohexane	.2
Fig. S3	Frontier molecular orbitals of BTE-O in cyclohexane	.3
Fig. S4	Frontier molecular orbitals of <i>c</i> -BTE-O in cyclohexane	.4
Table S	S1. Computed excitation energy, absorption wavelength, oscillator strength and molecular orbit	al
compos	sition for the lowest excited states in cyclohexane	.5
Fig. S5	¹ H NMR spectra of BTE-O (400 MHz, CDCl ₃ , ppm)	.6
Fig. S6	¹³ C NMR spectra of BTE-O (100 MHz, CDCl ₃ , ppm)	.7
Fig. S7	High resolution mass spectrum of BTE-O	.8

Fig. S1 1 H NMR signal changes of BTE-O before and after 365 nm photo-irradiation in C₆D₆ (2.35×10⁻² M).

Fig. S2 Simulated absorption spectra of BTE-O and *c*-BTE-O in cyclohexane.

Fig. S3 Frontier molecular orbitals of BTE-O in cyclohexane.

Fig. S4 Frontier molecular orbitals of *c*-BTE-O in cyclohexane.

Table S1. Computed excitation energy, absorption wavelength, oscillator strength and molecular orbital composition for the lowest excited states in cyclohexane

Compound	Excited state	Excitation energy	Oscillator strength	MO composition
	S1	3.50 eV, 353 nm	0.1199	H → L (85%)
				H-2> L (45%)
BTE-O	S2	3.91 eV, 317 nm	0.3445	H-1 → L (19%)
				H-3 → L (18%)
	S3 3.96 eV, 313	3 96 eV 313 nm	0.0681	H-1 → L (48%)
		3.30 CV, 313 hitt		H-2 → L (30%)
	S1	2.02 eV, 613 nm	0.2103	H –> L (96%)
c-BTE-O	S2	3.02 eV, 411 nm	0.4061	H> L+1 (91%)
_	\$3	3.42 eV, 362 nm	0.3758	H-1

Fig. S5 ¹H NMR spectra of BTE-O (400 MHz, CDCl₃, ppm).

Fig. S6 ¹³C NMR spectra of BTE-O (100 MHz, CDCl₃, ppm).

Elemental Composition Report

Single Mass Analysis Tolerance = 50.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off \cap Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 400 formula(e) evaluated with 69 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-80 H: 0-150 O: 0-12 S: 0-8 ECUST institute of Fine Chem 07-Dec-2011 19:33:29 ZHU-WH ZWH-SLW-45 29 (0.987) Cm (25:32) 1: TOF MS ES+ 4.80e+003 419.0779 100-% 420.0819 374.3627 416.3563 375.3676 381.3008 429.2420 406.3529 394.9150 430.0 4..... 0-4..... 395.0 400.0 405.0 410.0 Т 385.0 375.0 380.0 390.0 415.0 420.0 425.0 -1.5 Minimum: 100.0 Maximum: 50.0 50.0 i-FIT Calc. Mass mDa PPM DBE i-FIT (Norm) Formula Mass 419.0779 419.0776 0.3 0.7 15.5 39.3 0.0 C24 H19 O3 S2

Fig. S7 High resolution mass spectrum of BTE-O.

Page 1