Supplementary Information

Graphene-decorated silica stabilized stearic acid as thermal energy storage material

Chuanchang Li *, Baoshan Xie, Jian Chen *

Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China. E-mail: chuanchangli@csust.edu.cn; chenjian 513@126.com;

Table S1 Thermal properties of the SA^+/SG_5 and SA^{++}/SG_5 composites.

Samples	Loadage (β, %)	Melting temperature $(T_{\rm m}, {}^{\rm o}{\rm C})$	Freezing temperature (T_f , $^{\circ}$ C)	Latent heat of meltin g $(\Delta H_m, J g^{-1})$	Latent heat of freezing $(\Delta H_{\rm f}, {\rm J g^{-1}})$	Theoretic values of $\Delta H_{\rm m} (\Delta H_{\rm th}, \ {\rm J} {\rm g}^{-1})$	Crystalli nity of SA (F _c , %)	Efficient energy per unit mass of SA $(E_{ef}, J g^{-1})$
SA	100	54.11	53.22	177.3	173.8		100	
SA^{+}/SG_{5}	39.5	43.88/51.92	47.19/50.67	60.40	59.14	70.03	86.25	152.9
$SA^{++}\!/SG_5$	44.8	45.68/52.58	47.35/52.08	70.25	68.80	79.43	88.44	156.8

Note: $\Delta H_{\text{th}} = \Delta H_{\text{pure}} \times \beta$; $E_{\text{ef}} = \Delta H_{\text{pure}} \times F_{\text{c}}$

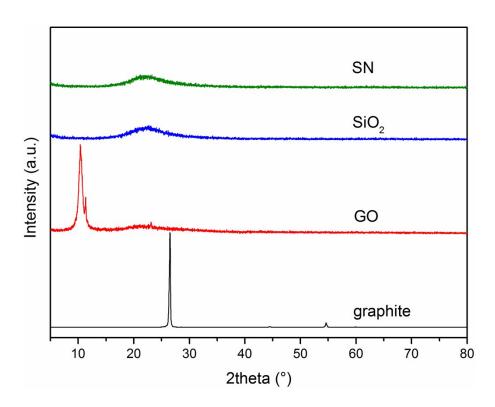


Figure S1 XRD patterns of the graphite, GO, SiO_2 , and SN.

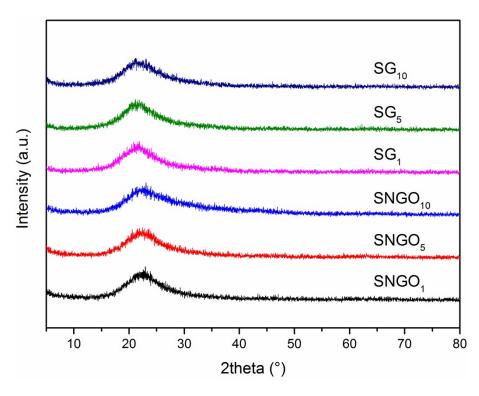


Figure S2 XRD patterns of the SNGO and SG.

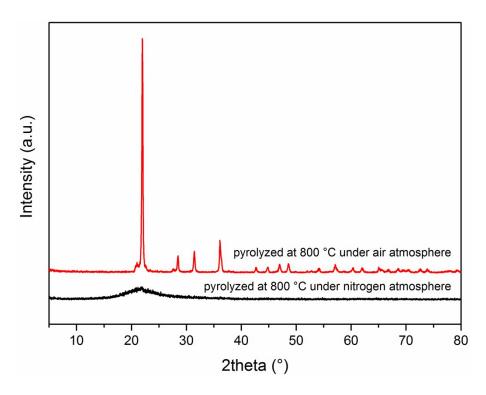
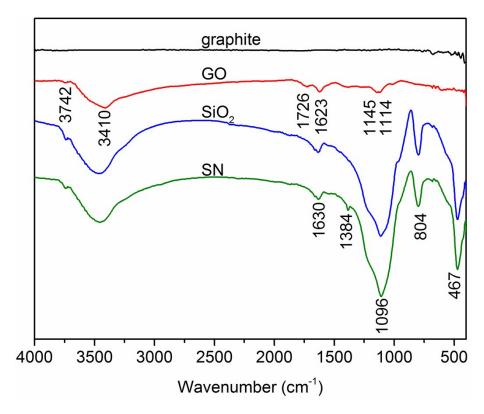



Figure S3 XRD patterns of the SiO₂ pyrolyzed at 800 °C under nitrogen atmosphere and air atmosphere, respectively.

 $\label{eq:Figure S4} \textbf{FTIR spectra of the graphite, GO, SiO}_2, and SN.$

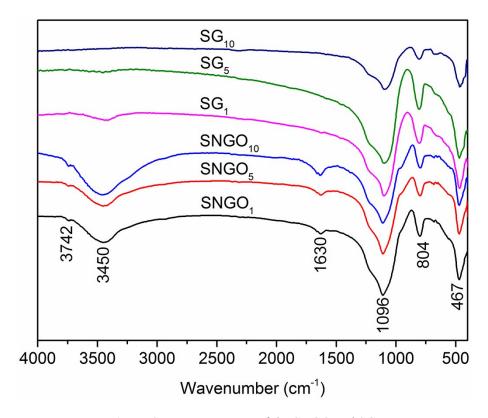
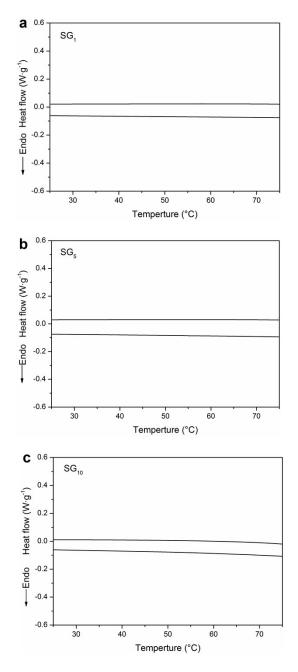



Figure S5 FTIR spectra of the SNGO and SG.

 $\label{eq:Figure S6} \textbf{Figure S6} \quad DSC \ curves \ of the \ SG_1, \ SG_5, \ and \ SG_{10}.$