Electronic Supplementary Information

A visible-light-induced photoelectrochemical water splitting system featuring organo-photocathode along with tungsten oxide photoanode

Yuto Kawai, Keiji Nagai and Toshiyuki Abe*

Contents:

- 1. Experimental details
- 2. An illustration of a three-electrode system employed in the present work [Scheme S1]
- 3. Action spectrum for photocurrents generated at WO₃, and its absorption spectrum and SEM image [**Fig. S1**]
- 4. CVs measured at both WO₃ (photoanode) and ITO/ZnPc/C₆₀–Pt (photocathode), and SEM images of C₆₀ surface and Pt-loaded C₆₀ surface in the organo-photoanode [**Fig. S2**]
- 5. Dependencies of both the amounts of H₂ and O₂ evolved during photoelectrochemical water splitting and light-to-hydrogen conversion efficiency on applied bias voltages in the reference WO₃–Pt system [**Fig. S3**]
- Data of control experiments in the reference WO₃-Pt system in the presence of methanol or Fe³⁺ ion [Table S1].

Experimental details

Chemicals

Commercially available C₆₀ of sublimated grade (>99.5%, Tokyo Chemical Industry (TCI)) was used as received. ZnPc (TCI) was purified by sublimation prior to use, as described elsewhere [1,2]. Other reagents were of extra-pure grade. ITO-coated glass plates (sheet resistance, 8 $\Omega \cdot \text{cm}^{-2}$; transmittance, >85%; ITO thickness, 174 nm) and FTO-coated glass plates (sheet resistance, 11 $\Omega \cdot \text{cm}^{-2}$; FTO thickness, 300 nm) were purchased from Asahi Glass Co., Ltd and Peccell Technologies, Inc., respectively.

Measurements

The absorption spectrum was measured using a PerkinElmer Lambda-25 spectrophotometer. The resulting absorption spectra of ZnPc (α -phase) **[3-5]** and C₆₀ **[6]** were identical to those reported previously, and their absorption coefficients were used to determine the thicknesses of the prepared film. Typically, the thicknesses of ZnPc and C₆₀ in the bilayer employed were estimated as 75 nm and 125 nm, respectively.

Gaseous products were analyzed using a gas chromatograph (GL Sciences, GC-3200) equipped with a thermal conductivity detector and a 5-Å molecular sieve column. Argon was used as the carrier gas.

The surface of WO₃ was observed through a scanning electron microscope (FE-SEM: JEOL, JSM-7000F).

Photoelectrochemical experiments

Photoelectrochemical operation was conducted using a potentiostat (Hokuto Denko, HA-301) equipped with a function generator (Hokuto Denko, HB-104), a coulomb meter (Hokuto Denko, HF-201) and a X–Y recorder (GRAPHTEC, WX-4000). A halogen lamp (light intensity: ca. 90 mW·cm⁻²) was used as the light source for photocathode; irradiation was performed from the back side of the ITO-coated face. A xenon lamp (light intensity: ca. 50 mW·cm⁻²) was also used for irradiating the photoanode. Monochromatic light, generated by the combination of a monochromator (Soma Optics, Ltd., S-10) with a light source, was used to irradiate the sample for measuring action spectra for photocurrents. Light intensity was measured using a power meter (type 3A from Ophir Japan, Ltd., or CS-40 from ASAHI SPECTRA). All photoelectrochemical studies were performed under an Ar atmosphere in an aqueous H₃PO₄ solution (pH = 2).

1) Three-electrode system

Photoelectrochemical measurements (such as CV measurements and action spectral measurements) were conducted in a single-compartment glass cell with a working electrode, a Ag/AgCl (sat.) reference electrode and a Pt counter electrode (see **Scheme S1**). The deposition of Pt onto ITO/ZnPc/C₆₀ was performed under photocathodic conditions where the photoelectrode was polarized from +0.4 V (vs. Ag/AgCl (sat.)) to -0.2 V in an acidic solution (pH = 2) containing 5.0 × 10^{-4} mol·dm⁻³ H₂PtCl₆·6H₂O under anaerobic conditions. The amount of Pt deposited was controlled by the amount of charge passed (typically, 4.0×10^{-2} C).

2) Two-electrode system

Photoelectrochemical water splitting was conducted in a system of WO₃ (photoanode, 1 cm²) and ITO/ZnPc/C₆₀–Pt (photocathode, 1 cm²). In order to avoid the spontaneous recombination of H₂ and O₂, a cell with twin compartments separated by a salt bridge was employed for the water splitting (Scheme 1). For preparing the salt bridge, agar (1.3 g) and KNO₃ (4.74 g) were first dissolved in hot water $(1.0 \times 10^{-2} \text{ dm}^3)$. Then the mixture was allowed to flow into the bridging part of the cell and solidify at room temperature. Water-splitting studies were also conducted using the aforementioned electrochemical apparatus.

Scheme S1 An illustration of a three-electrode system employed in the present work

Calculation methods

1) Faradic efficiency (F.E.)

The F.E. value was calculated according to the following procedure:

i) During the photoelectrochemical splitting of water, the amount of charge passed was measured by a coulomb meter. Based on the resulting amount of charge, the theoretical amounts of H_2 and O_2 evolved were calculated.

ii) After the photoelectrochemical reaction, the amounts of H_2 and O_2 evolved were quantified by a gas chromatograph.

The F.E. value for H_2 (or O_2) evolution is then determined using the following equation:

F.E. (%) = [amount of H₂ (or O₂) evolved]/[theoretical amount of H₂ (or O₂)] × 100 = [amount of H₂ (or O₂) evolved]/[(amount of charge passed)/(*nF*)] × 100,

where *n* is the number of electrons that participated in the evolution of a gaseous product (n = 2 for the reduction of H⁺ into H₂; n = 4 for O₂ evolution from water), and *F* is Faraday's constant (i.e. $9.65 \times 10^4 \,\mathrm{C \cdot mol}^{-1}$).

2) Light-to-hydrogen conversion efficiency (η)

The η value was estimated using the following equation:

 η (%) = ($\Delta_r G^{\circ}(H_2O)$ [kJ·mol⁻¹] × amount of H₂ evolved [mol] – voltage applied between anode and cathode [V] × charge passed during water splitting [C])/(total of incident photoenergy irradiated for photoelectrodes [J]) × 100,

where $\Delta_r G^{\circ}(H_2O)$ [237.13 kJ·mol⁻¹] is Gibbs free energy for the decomposition of H₂O into H₂ (1 mol). This calculation is in accordance with the previous procedure [7].

3) Incident photon-to-current efficiency (*IPCE*)

In order to obtain an action spectrum for photocurrent, the *IPCE* value was calculated using the following equation:

 $IPCE(\%) = [I/e]/[W/\varepsilon] \times 100,$

where I (A·cm⁻²) is the photocurrent density, e (C) is the elementary electric charge, W (W·cm⁻²) is the light intensity, and ε is the photon energy.

- [1] T. Abe, K. Nakamura, H. Ichinohe and K. Nagai, J. Mater. Sci., 47(2), 1071 (2012).
- [2] T. Abe, Y. Hiyama, K. Fukui, K. Sahashi, K. Nagai, Int. J. Hydrogen Energy, 40, 9165 (2015).
- [3] T. Morikawa, C. Adachi, T. Tsutsui and S. Saito, *Nippon Kagaku Kaishi*, 962 (1990).
- [4] J. H. Sharp and M. Lardon, J. Phys. Chem., 72, 3230 (1968).
- [5] H. Yoshida, Y. Tokura and T. Koda, *Chem. Phys.* **109**, 375 (1986).
- [6] A. Capobianchi and M. Tucci, *Thin Solid Films*, **451-452**, 33 (2004).

^[7] M. Radecka, M. Rekas, A. Trenczek-Zajac and K. Zakrzewska, J. Power Sources, 181, 46 (2008).

Action spectrum for photocurrents generated at WO₃, and its absorption spectrum and SEM image

Fig. S1 Action spectrum of the photocurrents generated at WO_3 and its absorption spectrum. Inset shows SEM image of WO_3 . In this study, photocurrents were measured in a three-electrode system depicted in Scheme S1 (*vide supra*)

Geometrical area of photoelectrode: WO₃, 1 cm² Applied potential: +0.35 V (vs. Ag/AgCl (sat.)) Electrolyte: H_3PO_4 solution (pH = 2)

A detailed interpretation of action spectra acquired for ITO/MPc/C₆₀–Pt ($M = H_2$ and Zn) was stated in the previous reports (i.e. T. Abe *et al.*, (i) *J. Phys. Chem. C* 2011, **115**, 7701 and (ii) *Int. J. Hydrogen Energy* 2015, **40**, 9165).

Fig. S2 Cyclic voltammograms measured at WO₃ (a, photoanode) and ITO/ZnPc/C₆₀–Pt (b, photocathode [1]). CV measurements were conducted in the three-electrode system depicted in Scheme S1 (*vide supra*). SEM images of C₆₀ surface (c) and Pt-loaded C₆₀ surface (d) in the organo-photocathode are also depicted.

Geometrical area of photoelectrodes: WO₃, 1 cm²; ITO/ZnPc/C₆₀–Pt, 1 cm² Film thickness in organic p-n bilayer: ZnPc, 75 nm; C₆₀, 125 nm Electrolyte: H₃PO₄ solution (pH = 2) Light intensity: ca. 90 mW·cm⁻² for photoanode, and ca. 50 mW·cm⁻² for photocathode Scan rate: 20 mV·s⁻¹

[1] T. Abe, Y. Hiyama, K. Fukui, K. Sahashi, K. Nagai, Int. J. Hydrogen Energy, 40, 9165 (2015).

Dependencies of both the amounts of H_2 and O_2 evolved during photoelectrochemical water splitting and light-to-hydrogen conversion efficiency on applied bias voltages in the reference WO_3 -Pt system

Fig. S3 Relationships of both the amounts of H₂ and O₂ evolved and η values with applied bias voltages. This study was conducted in a two-electrode system depicted in Scheme 1

Photoanode (geometrical area): $WO_3 (1 \text{ cm}^2)$ Counter electrode: Pt wire Electrolyte: H₃PO₄ solution (pH = 2) Light intensity: ca. 50 mW·cm⁻²

Data of photoelectrochemical water splitting at 0.4 V H_2 amount = 0.39 μ L·h⁻¹, O_2 amount = 0.18 μ L·h⁻¹, and η value = 5.2 × 10⁻⁴%

Table S1 Data of control experiments in the WO₃ (photoanode) and Pt (cathode) system.^a

System	$H_2 \text{ evolved/}\mu L \cdot h^{-1}$	O_2 evolved/ $\mu L \cdot h^{-1}$	Note
Entry 1 ^b	55.6	26.6	No control system.
Entry 2^{c}	106		In the presence of methanol.
Entry 3^d		25.3	In the presence of Fe^{3+} .

^{*a*} Bias voltage of 0.8 V was applied to the system with experimental conditions similar to those in Fig. 1. ^{*b*} Data from Fig. S3. ^{*c*} A methanol solution (methanol/water(v/v) = 1:1, pH = 2) was used. ^{*d*} An aqueous solution of Fe(NO₃)₃ (5 mM, pH = 2) was employed.