Supporting Information:

Hybrid Cu_xO-TiO₂ porous hollow nanosphere: preparation, characterization and photocatalytic properties

Yingqiao Xiang^a, Yingying Li^b, Xintong Zhang^b, Annan Zhou^a, Nan Jin^a

and Qinghong Xu*a

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology. Box. 98, 15 Beisanhuan Donglu, Beijing 100029, PR. China ^bKey Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR. China

Elemental mapping analysis of the sample Cu_xO -TiO₂ hollow

nanosphere

Elemental mapping analysis to the sample Cu_xO-TiO_2 hollow nanosphere was conducted on a JEOL JEM 2200FS equipped with a CEOS aberration corrector (CEOS GmbH, Heidelberg, Ger). The colors of the EDS maps were scaled universally to reflect the changes in the atomic concentrations of O, Ti and Cu. The red, blue and green indicate the EDS intensity of O, Ti and Cu in the EDS map, respectively.

The result indicates that the Cu element distributed uniformly though its content on TiO_2 surface was not enough.

Fig S1 STEM HAADF images and O (red), Ti (blue) and Cu (green) EDS maps of Cu_xO -TiO₂ hollow nanosphere.