Drug and dye binding induced folding of the intrinsically disordered

antimicrobial peptide CM15

Ferenc Zsila,^{*} Szilvia Bősze, Kata Horváti, Imola Cs. Szigyártó, Tamás Beke-Somfai

Electronic Supplementary Information

Peptide synthesis and purification

CM15 was produced on solid phase (Fmoc-Rink Amide MBHA, capacity = 0.67 mmol/g) resin in an automated peptide synthesizer (Syro-I, Biotage) using standard Fmoc/⁴Bu strategy with DIC/HOBt coupling reagents. Peptide was cleaved from the resin with TFA/H₂O/TIS (9.5 : 2.5 : 2.5 v/v) mixture (2 hrs, RT). After filtration the compound was precipitated in cold diethyl ether, centrifuged (4000 rpm, 5 min) and freeze-dried from water. Crude product was purified by RP-HPLC on a semipreparative C-18 Phenomenex Jupiter column ($250 \times 10 \text{ mm}$) using gradient elution, consisted of 0.1% TFA in water (eluent A) and 0.1% TFA in acetonitrile/water = 80/20 (v/v) (eluent B).

Peptide characterization

Purified CM15 was analysed by RP-HPLC on an analytical C-18 Zorbax ($150 \times 4.4 \text{ mm}$) column using gradient elution with the above mentioned eluent A and B (flow rate was 1 mL/min, gradient was 5-100 B%, 20 min, UV detection at 220 nm).

Molecular mass of the peptide was determined by using a Bruker Esquire 3000+ ESI mass spectrometer. Peptide samples were dissolved in a mixture of acetonitrile/water = 1/1 (v/v) containing 0.1% acetic acid and introduced by a syringe pump with a flow rate of 10 µL/min. The peptide content was determined by amino acid analysis using a Sykam Amino Acid S433H analyser equipped with an ion-exchange separation column and postcolumn derivatization. Prior to analysis, samples were hydrolysed with 6 M HCl in sealed and evacuated tubes at 110 °C for 24 h. For post-column derivatization the ninhydrin-method was used.

peptide	sequence	Z^a	$M_{av}{}^b$	R_t^c	peptide
			calcd/found	(min)	content ^e %
CM15	KWKLFKKIGAVLKVL	+6	1770.3/1770.4	13.6	52

C-terminus of the peptides was amidated.

^{*a*} Z: net charge at neutral pH. Calculated by the number of (K+R)-(E+D). Positive charge at the *N*-terminus increases Z by 1 unit.

^b Measured average molecular mass by Bruker Esquire 3000+ ESI-MS.

^cAnalytical RP-HPLC, gradient: 5% B, 5 min.; 5-100% B, 20 min.

^d Peptide content was determined by amino acid analysis using freeze-dried final product.

Analytical HPLC chromatogram:

Mass spectrum:

Computational details

To support the experimental investigations with a molecular level insight into the potential interactions underlying the experienced conformational transitions, quantum chemical calculations were performed. All theoretical computations were conducted using the Gaussian 09 (G09) software package¹. Graphical representation of the structures were created using Pymol (The PyMol Molecular Graphics System, DeLano Scientific, Palo Alto, CA). To investigate interaction of CM15 in helical conformation with the studied negatively charged compounds, initial models were built as follows. Helical starting structure of CM15 was taken from an NMR experiment.² All drug and dye molecules (suramin, pamoic acid, cromolyn, Congo red, trypan blue) were built using their solution phase, deprotonated forms, where the sulfonate and carboxylate groups consequently possess a negative charge. Initial structures of these compounds were optimized at the semi-empirical level, using the PM3MM method. PM3MM was developed from PM3 to include molecular mechanics correction for amide linkage present in peptides.³ The semi-empirical approach was chosen as it provides fast and efficient insight into the molecular level interactions with reasonable accuracy, without the cumbersome parametrization procedure required for in depth molecular dynamics simulations, a study beyond our current focus. Furthermore, the small molecule-peptide complexes are large molecular systems, up to 405 atoms, consequently preventing efficient use of higher quantum chemical methods, such as ab initio or density functional theory techniques.

All complexes were optimized starting from 3 different relative positions of the CM15 helix and the addressed negatively charged compound, requiring a total of 15 different calculations. These all resulted in optimized structures except two positions for suramin and one for trypan blue complexes. The latter ones were subject of several optimization attempts, but failed to reach full convergence. Presented structures were chosen from the pool of three different binding modes based on their relative energies as well as on the quantity and quality of the intermolecular salt-bridges, hydrogen bonds, and stacking interactions.

Protein Name	Disordered Sequence	DisProt ID
Eukaryotic peptide chain release factor subunit 1 (<i>H. sapiens</i>)	423 EYQGGDDEFFDLDDY 434	DP00310
Ribonucleoside-diphosphate reductase M2 subunit (<i>M.musculus</i>)	353NISLEGKTNFFEKRVGEYQ RMGVMSNSTENSFTLDADF3 83	DP00462
DnaK suppressor protein (E. coli)	17IAGVEPYQEKPGEEYMN33	DP00414
IIβ Phosphatidylinositol phosphate kinase (<i>H. sapiens</i>)	₂₂₀ STVAREASDKEKAKDLPT FKDNDFLNEGQKL ₂₅₀	DP00054
Thymidylate synthase (H. sapiens)	107 KIWD ANGS RDFLDSLGFS T REE 128	DP00073
DNA topoisomerase 1 (H. sapiens)	175 KPKNKDKDKKVPEPDNK KKKPKKEEEQKWKWWEEE RYPEG ₂₁₄	DP00075
SHC-transforming protein 1 (<i>H. sapiens</i>)	127GQLGG <mark>EEWTR</mark> HGS F VN <mark>K</mark> P T R G W LHP149	DP00154
Cyclin-H (H. sapiens)	288NVITKKRKGYEDDDYVSK KSKHEEEEWTDDDLVESL323	DP00307
Cbp/p300-interacting transactivator 2 (<i>H. sapiens</i>)	220 TDFIDEEVLMSLVIEMGLD RIKELPELWLGQNEFDFMTD FVCKQQPSRVS269	DP00356
Histo-blood group ABO system transferase (<i>H. sapiens</i>)	179 KRWQDVSMRRMEMISD 194	DP00339
Alcohol sulfotransferase (H. sapiens)	13 WDTYEDDISEISQK26	DP00404
Ras-related protein Ral-A (H. sapiens)	72QEDYAAIRDNYF ₈₃	DP00581
60S acidic ribosomal protein P2 (<i>H. sapiens</i>)	102 SEESDDDMGF GL FD 115	DP00793
Small heat shock protein HSP16.5 (<i>M. jannaschii</i>)	1MFGRDPFDSLFERMFKEFF ATPMTGTTMIQSS ₃₂	DP00067
DNA gyrase inhibitor YacG (E. coli)	40 WAAEEKR IPSSG DLSESDD WSEEPKQ65	DP00202
Calcyclin-binding protein (<i>M.musculus</i>)	178 EKPSYDTEADPSEGLMNV LKKIYEDGDDDMKRTINKA WVESREKQAREDTEF229	DP00226

Selected examples for experimentally verified, CM15-like disordered sequences consisting of charged (red) as well as aromatic residues (bold). Data were obtained from the DisProt database at <u>http://www.disprot.org/</u>.

Target protein	Length (a.a.)	Disorder (%)	UniProt ID	Refs.
Protamine 1B (Rainbow trout)	33	100	P02326	4
Basic fibroblast growth factor (<i>H. sapiens</i>)	288	55.56	P09038	5
Insulin-like growth factor 1 (<i>H. sapiens</i>)	195	51.28	P05019	5
<i>N</i> -lysine methyltransferase KMT5A (<i>H. sapiens</i>)	393	49.87	Q9NQR1	6
NAD ⁺ -dependent protein deacetylase sirtuin-1 (<i>H. sapiens</i>)	747	47.93	Q96EB6	7
Histone-lysine <i>N</i> - methyltransferase EHMT1 (<i>H. sapiens</i>)	1298	43.61	Q9H9B1	6
M-phase inducer phosphatase 1 (<i>H. sapiens</i>)	524	39.89	P30304	8
Interleukin-2 receptor α -subunit (<i>H. sapiens</i>)	272	38.97	P01589	9
Platelet-derived growth factor subunit B (<i>H. sapiens</i>)	241	33.20	P01127	5
Hepatitis B virus core protein	185	32.43	G9BNJ2	4
Tyrosine-protein phosphatase non-receptor type 1 (<i>H. sapiens</i>)	435	27.82	P18031	8
Tyrosyl-DNA phosphodiesterase 1 (<i>H. sapiens</i>)	608	27.47	Q9NUW8	10
D ₂ dopamine receptor (<i>H. sapiens</i>)	443	27.31	P14416	11
Receptor-type tyrosine-protein phosphatase C (<i>H. sapiens</i>)	1304	27.07	P08575	8
Tyrosine-protein phosphatase YopH (Y. enterocolitica)	468	25.43	P15273	8,12
DNA topoisomerase 2 (S. cerevisiae)	1428	25.00	P06786	13
Carcinoembryonic antigen- related cell adhesion molecule 1 (<i>H. sapiens</i>)	526	24.52	P13688	14
P _{2X2} purinoceptor (<i>R. norvegicus</i>)	472	22.25	P49653	15,16
Receptor-type tyrosine-protein phosphatase α (<i>H. sapiens</i>)	802	20.82	P18433	8

Target protein	Length (a.a.)	Disorder (%)	UniProt ID	Refs.
P _{2Y2} purinoceptor (<i>H. sapiens</i>)	377	20.16	P41231	17,18
NAD ⁺ -dependent protein deacetylase sirtuin-1 (<i>H. sapiens</i>)	389	20.05	Q8IXJ6	7
Protein kinase C type β (<i>R. norvegicus</i>)	671	18.93	P68403	19
Tumor necrosis factor-α (<i>H. sapiens</i>)	233	18.88	P01375	20
DNA polymerase α catalytic subunit (<i>H. sapiens</i>)	1462	18.67	P09884	21
Heat shock protein 104 (S. cerevisiae)	908	16.52	P31539	22
P _{2X1} purinoceptor (<i>R. norvegicus</i>)	399	12.78	P47824	15,17,23
Epidermal growth factor receptor (<i>H. sapiens</i>)	1210	12.40	P00533	24
Dual specificity protein phosphatase 3 (<i>H. sapiens</i>)	185	11.89	P51452	12
Nuclear receptor subfamily 1 group I member 2 (<i>H. sapiens</i>)	434	11.29	O75469	25
Complement control protein C3 (Vaccinia virus)	263	9.51	P68638	26

Disorder prediction results for various proteins found experimentally to be affected by suramin. The percentage of residues involved in predicted disordered regions of proteins is based on the corresponding MobiDB consensus score (<u>http://mobidb.bio.unipd.it</u>).²⁷

Target protein	Length (a.a.)	Disorder (%)	UniProt ID	Refs.
Microtubule-associated protein tau (<i>H. sapiens</i>)	758	89.45	P10636	28,29
α-Synuclein (H. sapiens)	140	41.43	P37840	30
Eukaryotic peptide chain release factor GTP-binding subunit (S. cerevisiae)	685	38.10	P05453	31,32
Choline <i>O</i> -acetyltransferase (<i>H. sapiens</i>)	748	20.59	P28329	33
Dihydrofolate reductase type 2 (<i>E. coli</i>)	78	20.51	P00383	34
PH domain leucine-rich repeat- containing protein phosphatase 2 (<i>H. sapiens</i>)	1323	17.54	Q6ZVD8	35
RecA (<i>E. coli</i>)	353	9.63	P0A7G6	36

Disorder prediction results for various proteins found experimentally to be affected by Congo red. The percentage of residues involved in predicted disordered regions of proteins is based on the corresponding MobiDB consensus score (<u>http://mobidb.bio.unipd.it</u>).²⁷

Target protein	Length (a.a.)	Disorder (%)	UniProt ID	Refs.
Tyrosine-protein phosphatase non-receptor type 1 (<i>H. sapiens</i>)	435	27.82	P18031	37
β-Arrestin-2 (<i>H. sapiens</i>)	409	19.07	P32121	38
Receptor-type tyrosine-protein phosphatase F (<i>H. sapiens</i>)	1907	15.57	P10586	37
DNA polymerase β (<i>H. sapiens</i>)	335	9.85	P06746	39
G-protein coupled receptor 35 (<i>H. sapiens</i>)	309	9.06	Q9HC97	38,40,41

Disorder prediction results for various proteins found experimentally to be affected by pamoic acid. The percentage of residues involved in predicted disordered regions of proteins is based on the corresponding MobiDB consensus score (<u>http://mobidb.bio.unipd.it/</u>).²⁷

Target protein	Length (a.a.)	Disorder (%)	UniProt ID	Refs.
β-Arrestin-2 (<i>H. sapiens</i>)	409	19.07	P32121	42
Protein S100-A13 (H. sapiens)	98	18.37	Q99584	43
Protein S100-B (Bos taurus)	92	17.39	P02638	43
Protein S100-A13 (Bos taurus)	98	13.27	P79342	44
Protein S100-A12 (Bos taurus)	92	10.87	P79105	44
G-protein coupled receptor 35 (<i>H. sapiens</i>)	309	9.06	Q9HC97	41,45

Disorder prediction results for various proteins found experimentally to be affected by cromolyn. The percentage of residues involved in predicted disordered regions of proteins is based on the corresponding MobiDB consensus score (<u>http://mobidb.bio.unipd.it/</u>).²⁷

Ligand:CM15	Heparin		Suramin		Congo red		Pamoic acid	
molar ratio	D_h	P.d.	D_h	P.d.	D_h	P.d.	D_h	P.d.
1:2	_	_	_	_	_	_	_	_
1:1	850 (±3	82) 45	1098 (±	569) 52	799 (±44	41) 55	_	_
2:1	1902 (±	1416) 75	859 (±6	47) 75	1460 (±1	1033) 71	131 (±	76) 58
3:1	870 (±42	26) 49	1053 (±	589) 57	1577 (±9	968) 61	370 (±	188) 51
4:1	1021 (±	519) 51	1453 (±	1016) 70	937 (±47	78) 51	335 (±2	261) 78
5:1	819 (±4	36) 53	1477 (±	532) 36	880 (±28	39) 33	427 (±2	282) 66

Polydispersity (P.d. in %) of ligand-CM15 samples and mean hydrodynamic diameter (D_h in nm) of the particles measured by DLS method.

Ligand	igand Intermol. Salt bridges		Intermol. H-bonds		Intermol. π -interaction	
	No. ^a	Residue	No.	Residues	Residue	Туре
Trypan blue	5	Lys3, Lys6, Lys7, Lys13	-	-	Trp2	Stacking, T-shaped
Suramin	8	Lys1, Lys3, Lys6, Lys7, Lys13	1	Lys6	Phe5	Stacking, T-shaped
Congo red	3	Lys1, Lys6, Lys13,	-	-	Phe5	Stacking, T-shaped
Pamoic acid	2	Lys1, Lys13,	-	-	Lys6	Cation-π
Cromolyn	2	Lys1, Lys13,	2	Lys6	Trp2	Stacking, Edge- edge

^a: Number of interactions found.

Supplementary Table 7

Assigned intermolecular interactions for the lowest energy complexes of the investigated small molecule-CM15 systems.

Spectral shift of the isodichroic points of the CD spectra during the titration of CM15 with heparin and organic small molecules. Isodichroic points are the zero crossover positions of CD curves of ligand-free and ligand-loaded forms of the peptide. The 'Y' axis denotes the differences (in wavenumber) between wavelength values (nm) shown inside the columns. Arrows indicate the wavelength shift of the isodichroic point upon increase the ligand/peptide molar ratio (in parentheses).

CD titration data of CM15 plotted against the ligand concentration in the sample solutions. Δv : the shift in wavenumber of the zero cross-over point measured during the titrations (see text for more details). Solid lines are the results of non-linear curve fitting analysis performed by using the "One site - specific binding with Hill slope" equation built in the GraphPad Prism software (ver. 6.01, San Diego, California, USA).

Structure of the suramin-CM15 complex optimized using the PM3MM method. A: Surface model of the complex where the peptide and the suramin molecule are shown as green and yellow sticks, respectively. Oxygen atoms on suramin are highlighted by red, the nitrogens on the lysine side chains are marked as blue spheres. B: Structural details of the H-bond network formed between suramin (yellow sticks) and CM15 lysines (green sticks). H-bonds are marked by dashed lines, with atom-atom distances displayed in Ångströms.

Structures of the small molecule-CM15 complexes obtained at the PM3MM level of theory. For all models the organic small molecules are represented by yellow sticks, whereas the CM15 molecules are as green sticks. The models are oriented with the N-terminal residue of CM15 located at the top of each panel. **A**, **B**: Two configurations of the trypan blue-CM15 complex. **A:** The one which does not involve H-bonds between the ligand and lysine residues from both terminals (*i.e.* Lys13 in this particular case) cannot induce folding of the entire CM15 sequence, and thus the calculation optimized into a partially unfolded conformation. **C**: The most stable complex of Congo red and CM15. **D**: The most stable complex of cromolyn and CM15. **E**: The most stable complex of pamoic acid and CM15.

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 03, Revision C.02*, Gaussian, Inc., Wallingford, CT, USA, 2004.
- 2. M. Respondek, T. Madl, C. Gobl, R. Golser and K. Zangger, J. Am. Chem. Soc., 2007, 129, 5228-5234.
- 3. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 221-264.
- 4. M. Okabe, M. Enomoto, H. Maeda, K. Kuroki and K. Ohtsuki, *Biol. Pharm. Bull.*, 2006, **29**, 1810-1814.
- 5. C. R. Middaugh, H. Mach, C. J. Burke, D. B. Volkin, J. M. Dabora, P. K. Tsai, M. W. Bruner, J. A. Ryan and K. E. Marfia, *Biochemistry*, 1992, **31**, 9016-9024.
- 6. G. Ibanez, D. Shum, G. Blum, B. Bhinder, C. Radu, C. Antczak, M. Luo and H. Djaballah, *Comb. Chem. High Throughput Screen.*, 2012, **15**, 359-371.
- 7. J. Trapp, R. Meier, D. Hongwiset, M. U. Kassack, W. Sippl and M. Jung, *ChemMedChem*, 2007, **2**, 1419-1431.
- D. F. McCain, L. Wu, P. Nickel, M. U. Kassack, A. Kreimeyer, A. Gagliardi, D. C. Collins and Z. Y. Zhang, *J. Biol. Chem.*, 2004, 279, 14713-14725.
- 9. G. B. Mills, N. Zhang, C. May, M. Hill and A. Chung, *Cancer Res.*, 1990, **50**, 3036-3042.
- S. Walker, C. Meisenberg, R. A. Bibby, T. Askwith, G. Williams, F. H. Rininsland, L. H. Pearl, A. W. Oliver, S. El-Khamisy, S. Ward and J. R. Atack, *Anal. Biochem.*, 2014, 454, 17-22.
- 11. M. Waldhoer, E. Bofill-Cardona, G. Milligan, M. Freissmuth and C. Nanoff, *Mol. Pharmacol.*, 1998, **53**, 808-818.
- 12. Y. L. Zhang, Y. F. Keng, Y. Zhao, L. Wu and Z. Y. Zhang, *J. Biol. Chem.*, 1998, **273**, 12281-12287.

- 13. K. Bojanowski, S. Lelievre, J. Markovits, J. Couprie, A. Jacquemin-Sablon and A. K. Larsen, *Proc. Natl. Acad. Sci. USA*, 1992, **89**, 3025-3029.
- M. W. Beukers, C. J. Kerkhof, M. A. van Rhee, U. Ardanuy, C. Gurgel, H. Widjaja, P. Nickel, I. J. AP and W. Soudijn, *Naunyn Schmiedebergs Arch. Pharmacol.*, 1995, 351, 523-528.
- 15. A. D. Michel, K. Lundstrom, G. N. Buell, A. Surprenant, S. Valera and P. P. Humphrey, *Br. J. Pharmacol.*, 1996, **118**, 1806-1812.
- C. Wolf, C. Rosefort, G. Fallah, M. U. Kassack, A. Hamacher, M. Bodnar, H. Wang, P. Illes, A. Kless, G. Bahrenberg, G. Schmalzing and R. Hausmann, *Mol. Pharmacol.*, 2011, **79**, 649-661.
- 17. M. U. Kassack, K. Braun, M. Ganso, H. Ullmann, P. Nickel, B. Boing, G. Muller and G. Lambrecht, *Eur. J. Med. Chem.*, 2004, **39**, 345-357.
- 18. C. E. Müller, Curr. Pharm. Des., 2002, 8, 2353-2369.
- 19. Z. Khaled, D. Rideout, K. R. O'Driscoll, D. Petrylak, A. Cacace, R. Patel, L. C. Chiang, S. Rotenberg and C. A. Stein, *Clin. Cancer Res.*, 1995, **1**, 113-122.
- 20. F. Mancini, C. M. Toro, M. Mabilia, M. Giannangeli, M. Pinza and C. Milanese, *Biochem. Pharmacol.*, 1999, **58**, 851-859.
- H. K. Jindal, C. W. Anderson, R. G. Davis and J. K. Vishwanatha, *Cancer Res.*, 1990, 50, 7754-7757.
- 22. M. P. Torrente, L. M. Castellano and J. Shorter, *PLoS One*, 2014, 9, e110115.
- 23. G. Lambrecht, K. Braun, M. Damer, M. Ganso, C. Hildebrandt, H. Ullmann, M. U. Kassack and P. Nickel, *Curr. Pharm. Des.*, 2002, **8**, 2371-2399.
- 24. P. M. Fischer and D. P. Lane, Curr. Med. Chem., 2000, 7, 1213-1245.
- 25. S. J. Shukla, S. Sakamuru, R. Huang, T. A. Moeller, P. Shinn, D. Vanleer, D. S. Auld, C. P. Austin and M. Xia, *Drug Metab. Dispos.*, 2011, **39**, 151-159.
- 26. V. K. Ganesh, S. K. Muthuvel, S. A. Smith, G. J. Kotwal and K. H. M. Murthy, *Biochemistry*, 2005, **44**, 10757-10765.
- 27. E. Potenza, T. Di Domenico, I. Walsh and S. C. Tosatto, *Nucleic Acids Res.*, 2015, **43**, D315-320.
- K. I. Lira-De Leon, P. Garcia-Gutierrez, I. N. Serratos, M. Palomera-Cardenas, P. Figueroa-Corona Mdel, V. Campos-Pena and M. A. Meraz-Rios, J. Alzheimers Dis., 2013, 35, 319-334.
- 29. E. Chang, N. S. Honson, B. Bandyopadhyay, K. E. Funk, J. R. Jensen, S. Kim, S. Naphade and J. Kuret, *Curr. Alzheimer Res.*, 2009, **6**, 409-414.

- 30. A. S. Maltsev, A. Grishaev and A. Bax, *Biochemistry*, 2012, **51**, 631-642.
- 31. J. R. Glover, A. S. Kowal, E. C. Schirmer, M. M. Patino, J. J. Liu and S. Lindquist, *Cell*, 1997, **89**, 811-819.
- 32. B. Y. Feng, B. H. Toyama, H. Wille, D. W. Colby, S. R. Collins, B. C. May, S. B. Prusiner, J. Weissman and B. K. Shoichet, *Nat. Chem. Biol.*, 2008, **4**, 197-199.
- 33. H. G. Mautner, R. E. Merrill, S. F. Currier and G. Harvey, *J. Med. Chem.*, 1981, 24, 1534-1537.
- D. Bastien, M. C. Ebert, D. Forge, J. Toulouse, N. Kadnikova, F. Perron, A. Mayence, T. L. Huang, J. J. Vanden Eynde and J. N. Pelletier, *J. Med. Chem.*, 2012, 55, 3182-3192.
- 35. E. Sierecki, W. Sinko, J. A. McCammon and A. C. Newton, *J. Med. Chem.*, 2010, **53**, 6899-6911.
- 36. T. J. Wigle and S. F. Singleton, *Bioorg. Med. Chem. Lett.*, 2007, **17**, 3249-3253.
- 37. S. Shrestha, Y. S. Shim, K. C. Kim, K. H. Lee and H. Cho, *Bioorg. Med. Chem. Lett.*, 2004, **14**, 1923-1926.
- 38. L. Jenkins, N. Harries, J. E. Lappin, A. E. MacKenzie, Z. Neetoo-Isseljee, C. Southern, E. G. McIver, S. A. Nicklin, D. L. Taylor and G. Milligan, *J. Pharmacol. Exp. Ther.*, 2012, **343**, 683-695.
- 39. H.-Y. Hu, J. K. Horton, M. R. Gryk, R. Prasad, J. M. Naron, D.-A. Sun, S. M. Hecht, S. H. Wilson and G. P. Mullen, *J. Biol. Chem.*, 2004, **279**, 39736-39744.
- 40. L. Jenkins, J. Brea, N. J. Smith, B. D. Hudson, G. Reilly, N. J. Bryant, M. Castro, M. I. Loza and G. Milligan, *Biochem. J.*, 2010, **432**, 451-459.
- 41. M. Funke, D. Thimm, A. C. Schiedel and C. E. Muller, J. Med. Chem., 2013, 56, 5182-5197.
- 42. A. E. MacKenzie, G. Caltabiano, T. C. Kent, L. Jenkins, J. E. McCallum, B. D. Hudson, S. A. Nicklin, L. Fawcett, R. Markwick, S. J. Charlton and G. Milligan, *Mol. Pharmacol.*, 2014, **85**, 91-104.
- 43. Y. Arendt, A. Bhaumik, R. Del Conte, C. Luchinat, M. Mori and M. Porcu, *ChemMedChem*, 2007, **2**, 1648-1654.
- 44. T. Shishibori, Y. Oyama, O. Matsushita, K. Yamashita, H. Furuichi, A. Okabe, H. Maeta, Y. Hata and R. Kobayashi, *Biochem. J.*, 1999, **338** (**Pt 3**), 583-589.
- 45. D. Thimm, M. Funke, A. Meyer and C. E. Muller, J. Med. Chem., 2013, 56, 7084-7099.