

2

1

3

Fig. S1. The chemical structure of mPD and PmPD.

4 The calculated process for the mass of N

According to the mass ratios of the Fe and N (8.2, 2.6 and 1.2 for 4:1Fe₃O₄-5 NH₂@PmPDs, 1:1Fe₃O₄-NH₂@PmPDs, and 1:4Fe₃O₄-NH₂@PmPDs, respectively), 6 the mass fraction of the N-based group on the Fe₃O₄-NH₂@PmPDs can be obtained, 7 which is shown in the Table S1. Where w(N) is the mass fraction of N on the 8 adsorbents; the w(-N=) is the mass fraction of benzenoid amine groups (-N=) on the 9 adsorbents; the w(-NH-) is the mass fraction of quinoid imine groups w(-NH-) on the 10 adsorbents. m(Cr) is the mass of Cr adsorbed on the adsorbents. m(N) is the mass of N 11 on the adsorbents. The adsorption isotherms of Cr(VI) on various Fe₃O₄-12 NH₂@PmPDs and the simulations with Langmuir for 4:1Fe₃O₄-NH₂@PmPDs, 13 1:1Fe₃O₄-NH₂@PmPDs, 1:1Fe₃O₄-NH₂@PmPDs have been shown in Fig. S2. The 14 correlation coefficients (R^2) of the Langmuir model indicats that the Langmuir model 15 could satisfactory depict the adsorption process. Then the mass fractions of Cr(VI) 16 adsorbed on Fe₃O₄-NH₂@PmPDs were also investigated shown in Table S1. 17

2 Fig. S2. The adsorption isotherms of Cr(VI) on various Fe₃O₄-NH₂@PmPDs (A) and
3 the simulations with Langmuir (B). T=313 K.

4 Table S1

5 The mass fraction of the N-based group on the Fe₃O₄-NH₂@PmPDs

Adsorbents	<i>M</i> (Fe): <i>M</i> (N)	Csmax(mg/g)	<i>M</i> (Cr): <i>M</i> (N)	<i>M</i> (Fe): <i>M</i> (N)	W(N)	W(-N=)	W(-NH-)
4:1Fe ₃ O ₄ -NH ₂ @PmPDs	8.2	285	3.86	8.2	7.38%	0.89%	6.50%
1:1Fe ₃ O ₄ -NH ₂ @PmPDs	2.6	610	3.65	2.6	16.71%	2.01%	14.70%
1:4Fe ₃ O ₄ -NH ₂ @PmPDs	1.2	689	2.79	1.2	24.68%	2.96%	21.72%

6