Y doping effect on high-pressure behavior in Ag₂S nanocrystals

Pan Wang^{a,b}, Rui Zhao^c, Lixin Wu^b and Mingzhe Zhang^{*a}

^aState Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
^bState Key Laboratory of Supemolecular Structure and Materials, Jilin University, Changchun 130012, China
^cCollege of Computer, Jilin Normal University, Siping 136000, China
*Corresponding Author, E-mail: <u>zhangmz@jlu.edu.cn</u>

1. XPS analysis of monoclinic Ag₂S:Y nanocrystals

For Y doped Ag₂S nanocrystals, it is obviously seen that no other impurities are detectable in the full X-ray photoelectron spectroscopy (XPS) spectra of Fig. S1c. There is some overlap in Figure S1a, due to the close binding energies of Y and S elements. The S $2p_{3/2}$ and S $2p_{1/2}$ peaks (Fig. S1a) at 161.6 and 162.7 eV manifest that the S is in S²⁻ state.¹ The peak (Fig. S1a) of Y $3d_{5/2}$ at 158.5 eV manifests that Y is in Y³⁺ state,² excluding the possibility of Y metal clusters. The Ag $3d_{5/2}$ and Ag $3d_{3/2}$ peaks (Fig. S1b) at 368.8 and 374.7 eV suggest that Ag is in Ag⁺ state, in agreement with the reported value of Ag₂S.³ As we can see from Table S1 of XPS analysis, Y content is about 0.41 atom% in the monoclinic Ag₂S:Y samples.

Fig. S1 XPS spectra of (a-c) the monoclinic Ag₂S:Y nanocrystals at ambient conditions. (a)

Binding energy of Y 3d and S 2p regions; (b) binding energies of Ag 3d regions; (c) full scan spectra, respectively.

 Table S1. Element content percentage of the monoclinic Ag₂S:Y nanocrystals at ambient conditions.

Element	Weight (%)	Atom (%)
S	12.36	32.15
Y	0.43	0.41
Ag	87.21	67.44
Total	100.00	100.00

2. Representative Rietveld refinement results

Representative Rietveld refinement results from Materials Studio and POWDERCELL softwares of the pure Ag₂S and Ag₂S:Y samples are displayed in Table S2 and S3, respectively. For Ag₂S:Y samples, representative Rietveld refinement figures at several pressure points are shown in Fig. S2 to display the goodness of the Rietveld refinements.

Table S2. Representative Rietveld refinement results of the pure Ag_2S nanocrystals fromMaterials Studio and POWDERCELL softwares.

	Draggura	Sussa	Cell parameter					sition J	parame	eter	Refinement agreement	
Phase		Space	a (Å)	b (Å)	c (Å)	β(°)	A .				D	D
	(GPa)	group		uncer	tainty		-Atom	X	У	Z	K _p	K _{wp}
			4 220	6 0 1 6	7 853	00 651	S	0.354	0.254	0.121		
Ι	0	P21/n	4.220	0.002	0.003	0.023	Ag1	0.771	0.010	0.318	0.076	0.093
			0.001	0.002	0.005	0.025	Ag2	0.288	0.311	0.444		
			4 176	6 780	7 843	99 585	S	0.351	0.221	0.139		
Ι	0.93	P21/n	0.001	0.001	0.002 (0.019	Ag1	0.751	0.029	0.324	0.092	0.135
			0.001	0.001	0.002	0.017	Ag2	0.258	0.299	0.457		
Ι			4 097	6 481	7 672	98 550	S	0.315	0.213	0.134		
	6.83	P21/n	0.001	0.001	0.003 (0.025	Ag1	0.739	0.009	0.870	0.087	0.128
			0.001	0.001	0.000	0.020	Ag2	0.241	0.326	0.442		

			6 6 2 5	4 1 7 0	7 220		S	0.236	0.157 0.159		
II 6.83	$P2_{1}2_{1}2_{1}$	0.025	4.170	0.001	-	Ag1	0.014	0.253 0.394	0.087	0.128	
		0.002	0.001	0.001		Ag2	0.135	0.431 0.830			
			(500	4 1 9 7	7 1 2 0		S	0.236	0.133 0.154		
II	II 9.30	$P2_{1}2_{1}2_{1}$	0.089	4.18/	/.138		Ag1	0.014	0.249 0.422	0.079	0.095
		0.002	0.003	0.001	-	Ag2	0.142	0.400 0.812			
			4.191	5.830	7.982	94.819	S	0.200	0.249 0.094		
III	9.30	P21/n					Ag1	0.716	0.01520.280	0.079	0.095
			0.001	0.003	0.001	0.034	Ag2	0.232	0.299 0.443		
			4.135	5.672	7.931	93.580	S	0.205	0.258 0.090		
III 18.20	18.20	P21/n					Ag1	0.734	0.016 0.264	0.067	0.078
		0.002	0.003	0.001	0.026	Ag2	0.238	0.310 0.436			

Table S3. Representative Rietveld refinement results of the Ag2S:Y nanocrystals fromMaterials Studio and POWDERCELL softwares.

	D	C	Cell parameter					sition j	parame	eter	Refinement agreement	
Phase	Pressure	Space	a (Å)	b (Å)	c (Å)	β (°)	A 4 9 49				D	D
	(GPa)	group		uncer	tainty		Atom	X	У	Z	K _p	\mathbf{K}_{wp}
			4 0 1 0	6.004	7 0 2 0	00 (20	S	0.363	0.254	0.121		
Ι	0	P21/n	4.213	6.904	/.839	99.639	Ag1	0.767	0.012	0.317	0.071	0.090
			0.001	0.001	0.001	0.014	Ag2	0.289	0.315	0.434		
			4 1 0 0	6.020	a 0 a 0	00.540	S	0.337	0.232	0.138		
Ι	1.23	P21/n	4.188	6.820	0.001	0.010	Ag1	0.745	0.030	0.311	0.055	0.121
			0.001	0.001			Ag2	0.268	0.331	0.448		
			4 1 5 0	(5 ()	7 710	00 125	S	0.318	0.202	0.127		
Ι	5.90	P21/n	4.158	6.562	/./19	99.125	Ag1	0.735	0.026	0.298	0.087	0.105
			0.002	0.002	0.001	0.015	Ag2	0.235	0.318	0.473		
			6.505	4.000	7.210		S	0.246	0.133	0.159		
II	5.90	P2 ₁ 2 ₁ 2 ₁	6.525	4.220	/.318	-	Ag1	0.013	0.277	0.408	0.087	0.105
			0.001	0.001	0.002		Ag2	0.139	0.455	0.844		

3

II 9.00		6 (12	4.100			S	0.251 0.109 0.143			
	$P2_{1}2_{1}2_{1}$	6.612	4.106	7.263	-	Ag1	0.024 0.225 0.432	0.071	0.092	
		0.001	0.003	0.001		Ag2	0.158 0.425 0.823			
			4.241	5.827	7.883	94.989	S	0.224 0.232 0.095		
III 9.00	9.00	P21/n					Ag1	0.728 0.006 0.290	0.071	0.092
			0.001	0.001	0.001	0.015	Ag2	0.256 0.316 0.451		
			4.114	5.718	7.965	93.012	S	0.223 0.268 0.105		
III 17.08	17.08	P21/n					Ag1	0.736 0.033 0.287	0.050	0.074
		0.004	0.000	0.004	0.037	Ag2	0.255 0.298 0.429			

Fig. S2 Rietveld refinements at (a) 1.23 GPa, phase I, (b) 5.90 GPa, phase I + phase II, (c) 17.08 GPa, phase III for Ag₂S:Y samples.

3. The evolution of normalized cell parameters for three phases

The evolution of normalized cell parameters (Fig. S3) for the three phases of the pure Ag_2S sample are investigated to reveal the phase transformation route. During the initial compression,

the contraction of the lattice parameters is rather anisotropic and the b axis is the most compressible of the lattice constants, as indicated in the obtained evolution for the normalized cell parameters of the phase I (Fig. S3a). In phase II, it can be seen that a and b axes are less compressible in Fig. S3b. As can be seen in Fig. S3c, in phase III, the b axis is the most compressible of the lattice constants and the c axis is almost incompressible.

Fig. S3 Normalized cell parameters a/a_0 , b/b_0 , c/c_0 as a function of pressure for (a) phase I, (b) phase II, and (c) phase III of the pure Ag₂S nanocrystals.

References

- X. Yang, H. T. Xue, J. Xu, X. Huang, J. Zhang, Y.-B. Tang, T.-W. Ng, H.-L. Kwong, X.-M. Meng and C.-S. Lee, ACS Appl Mater Interfaces, 2014, 6, 9078-9084.
- 2. I. Gonzalo-Juan, J. A. Escribano, Y. Castro, A. J. Sanchez-Herencia, J. L. G. Fierro and B. Ferrari, *Green Chem.*, 2014, **16**, 3286-3296.
- 3. W. Jiang, Z. M. Wu, X. N. Yue, S. J. Yuan, H. F. Lu and B. Liang, *RSC Adv.*, 2015, 5, 24064-24071.