Electronic Supplementary Information

Computational design of polymers: poly(ester amide) and polyurethane

Yuichiro Fukuda, Kohei Miyamae and Yuji Sasanuma*

Department of Applied Chemistry and Biotechnology, Graduate School and Faculty of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan Table S1 Stable conformations, intramolecular interactions, and effectual MO theories found for various functional units and characteristic ratios of the corresponding polymers

Polymer type	Included element	Corresponding polymer	Functional unit	Stable conformation	Intramolecular interaction ^a	Characteristic ratio ($< r^2 >_0 / n l^2$) ^b	Effectual MO theory ^c	Reference no.
Polyether	С, Н, О	poly(methylene oxide) poly(ctihylene oxide) poly(trimethylene oxide) poly(propylene oxide) poly(terramethylene oxide)	$ \begin{bmatrix} -0-CH_2 -] \\ [-0-CH_2 - CH_2 -] \\ [-0-CH_2 - CH_2 -] \\ [-0-CH_2 - CH_2 $	gg tggt gg^+g^- [(R) form], tit tg^+g^-	$ \begin{array}{l} \mbox{dipole-dipole, n}_0 \rightarrow \sigma^*_{\rm CO}, E_\beta \approx -1.7\\ \rm C-HO, E_\sigma \approx -1.5 \mbox{ to } +0.1\\ E_\sigma \approx -0.7\\ \rm C-HO, E_\sigma \approx -0.6\\ \rm C-HO, \end{array} $	9.2 5.1 (40 °C) 3.7 5.9 (isotactic, 50 °C) 5.7 (30 °C)	B3IXP MP2 MP2 MP2 MP2	1,2 2-4 5 9,10
Polyamine	C, H, N	poly(ethylene imine) poly(trimethylene imine)	$[-NH-CH_2-CH_2-1]$ $[-NH-CH_2-CH_2-CH_2-]$	tgt [meso] tg±g [±] g [∓] t [racemo]	$N \cdots H - N$	3.1 3.5	MP2 MP2	11,12 13
Polyphosphine	С, Н, Р	poly(1-methylphosphirane) poly(1-phenylphosphirane)	$[-P(CH_3) - CH_2 - CH_2 -]$ $[-P(C_6H_5) - CH_2 - CH_2 -]$	ttt [meso] ttt [racemo]	$\pi - \pi$	7.0 [atactic] 13.0 [atactic]	MP2 MP2	14 14
Polysulfide (Polythioether)	С, Н, S	poly(methylene sulfide) poly(ethylene sulfide) poly(trimethylene sulfide) poly(propylene sulfide)	[-S-CH ₂ -] [-S-CH ₂ -CH ₂ -] [-S-CH ₂ -CH ₂ -CH ₂ -] [-S-CH ₂ -CH(CH ₃)-]	$\begin{array}{c} gg\\ g^{\pm} (g^{\mp} \\ gggg\\ g^{-} g^{-} \ [(R) \ form] \end{array}$	dipole-dipole, $n_{\rm S} \rightarrow \sigma_{\pi,{\rm S}}^*, E_{\rho} \approx -1.5$ dipole-dipole, $E_{\rho} \approx -0.4$, [SS] $E_{\rho} \approx -0.2, E_{\sigma} \approx -0.3$ $E_{\rho} \approx -0.5$	7.6 3.1 3.6 4.0 (isotactic)	B3LYP MP2 MP2 MP2	1,2 2,3 2,15 2,15
Polyselenide (Polyselenoether)	C, H, Se	poly(methylene selenide) poly(ethylene selenide) poly(trimethylene selenide)	[-Se-CH ₂ -] [-Se-CH ₂ -CH ₂ -] [-Se-CH ₂ -CH ₂ -CH ₂ -]	$\overset{gg}{\overset{g\pm tg^+}{g^\pm tg^+}}$	dipole-dipole, $n_{Se} \rightarrow \sigma_{CSe}^*$, $E_{\rho} \approx -1.2$ $E_{\rho} \approx -0.3$, [Se · · Se] $E_{\rho} \approx -0.4$	7.3 5.4 5.3	MP2 MP2 MP2	16 16 16
Copolymer	C, H, N, O C, H, N, S C, H, O, S	poly(ethylene imine- <i>alt</i> -ethylene oxide) poly(ethylene imine- <i>alt</i> -ethylene sulfide) poly(ethylene oxide- <i>alt</i> -ethylene sulfide)	$ \begin{bmatrix} -\text{NH}-\text{CH}_2-\text{CH}_2-\text{O}-\text{CH}_2-\text{CH}_2-\end{bmatrix} \\ \begin{bmatrix} -\text{NH}-\text{CH}_2-\text{CH}_2-\text{S}-\text{CH}_2-\text{CH}_2-\end{bmatrix} \\ \begin{bmatrix} -\text{O}-\text{CH}_2-\text{CH}_2-\text{S}-\text{CH}_2-\text{CH}_2-\end{bmatrix} \\ \end{bmatrix} $	tg ⁻ t [<i>l</i> form] in N-C-C-O tg ⁻ g ⁻ [<i>l</i> form] in N-C-C-S ttg in O-C-C-S	$\begin{split} & N-H\cdotsO, C-H\cdotsN, C-H\cdotsO \\ & N-H\cdotsS, E_{p(C,S)}=-0.4 \\ & C-H\cdotsO, \operatorname{dipole-dipole}, E_{p(C,S)}=-0.4 \end{split}$	1.3 5.2 6.0	MP2 MP2 MP2	12,17 12 18
Polyester	С, Н, О	poly(ethylene terephthalate) poly(trimethylene terephthalate) poly(butylene terephthalate) poly(ethylene naphthalate) poly(Lactide), poly((S)-lactic acid) poly((R)-3-lactic acid) poly(ethylene succinate) poly(butylene succinate)	$ \begin{bmatrix} coc_6H_4coo - (cH_2)_2 - 0 -] \\ [coc_6H_4coo - (cH_2)_3 - 0 -] \\ [coc_6H_4coo - (cH_2)_4 - 0 -] \\ [coc_6H_4coo - (cH_2)_4 - 0 -] \\ [coc_0H(cH_3) - 1 - 0 -] \\ [coo - 0 - cH(cH_3) - 0 - 1 - 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0$	rans-tgt d rans-tggt, tggg d trans-tggt, tgrgg, tg [±] tg [±] t d tg [±] t ttg [±] t tg [±] t tg [±] tg [±] t ttt ttt	$ \begin{array}{l} {\rm C-H}\cdots 0, \mbox{dipole}\ dipole, \ E_{\sigma}\approx -1.2 \\ \pi-\pi, \ {\rm C-H}\cdots 0, \ {\rm dipole}\ {\rm dipole}\ E_{\sigma}\approx -0.6 \\ \pi-\pi, \ {\rm C-H}\cdots 0, \ {\rm dipole}\ {\rm dipole}\ E_{\sigma}\approx -0.3 \\ {\rm C-H}\cdots 0, \ {\rm dipole}\ {\rm dipole}\ E_{\sigma}\approx -1.2 \\ {\rm O}\cdots {\rm H}\ [0\cdots 0] \\ {\rm O}\cdots {\rm H}\ [0\cdots 0] \\ {\rm O}\cdots {\rm H}\ E_{\sigma}\approx -1.3 \\ {\rm E}_{\sigma}\approx -1.3 \end{array} $	2.6 <i>^e</i> 4.1 <i>^e</i> 3.3.8 <i>^e</i> 11.8 5.6 6.2 7.1	MP2 MP2, MP3 ^f MP2, MP3 ^f MP2 or B3LYP ^g MP2, M06-2X MP2, M06-2X	19 20,21 19 22 23 24 24 24
Polyamide	C, H, N	aromatic polyamide 2T aromatic polyamide 3T	$[-COC_6H_4CONH-(CH_2)_2-NH-]$ $[-COC_6H_4CONH-(CH_2)_3-NH-]$	cis-trans-tg $^{\pm}$ g $^{\mp}$ d cis-trans-tttg d	N–H…O C–H…O	3.2 ^e 3.7 ^e	B3LYP B3LYP	25 25
Polythioester	C, H, O, S	poly(ethylene dithioester) poly(trimethylene dithioester)	$[-COC_6H_4COS-(CH_2)_2-S-]$ $[-COC_6H_4COS-(CH_2)_3-S-]$	trans- $g^{\pm}tg^{\mp}d$ trans-gttg d	dipole-dipole, $E_{\rho} \approx -1.5$, [SS] dipole-dipole, $E_{\rho} \approx -1.0$ to -1.4	16.7 ^e 10.5 ^e	MP2 MP2	25–28 25,27,28
Polythioamide	C, H, N, S	aromatic polythioamide 2T aromatic polythioamide 3T	$\label{eq:constraint} \begin{array}{l} [-CSC_6H_4CSNH-(CH_2)_2-NH-] \\ [-CSC_6H_4CSNH-(CH_2)_3-NH-] \end{array}$	cis-trans-tg ^{\pm} g ^{\pm} , g ^{\pm} tg ^{\mp} , ggg ^d cis-trans-tttt ^d	SH−N	3.6 ^e 5.7 ^e	B3LYP B3LYP	25 25
Polydithioester	С, Н, S	poly(ethylene tetrathioester) poly(trimethylene tetrathioester)	$[-CSC_6H_4CSS - (CH_2)_2 - S -]$ $[-CSC_6H_4CSS - (CH_2)_3 - S -]$	trans-cis- g^{\pm} tg $^{\mp}$ d trans-cis-gttg d	dipole-dipole, $E_{ ho} \approx -1.0$, [S…S] dipole-dipole, $E_{ ho} \approx -0.8$	5.2 ^e 6.1 ^e	MP2 MP2	25–28 25,27,28
Polysilane	C, H, Si	poly(methyi-n-propylsilane) poly(di-n-butyisilane) poly(di-n-hexylsilane)	$\begin{array}{l} [-Si(CH_3)(C_3H_7)-] \\ [-Si(C_4H_9)2_2-] \\ [-Si(C_6H_{13})2_2-] \end{array}$		[repulsion between the side chains] [as above] [as above]	19.9 42.3 (19.1 °C) 42.5	4 (MD) 4 (MD) 4 (MD)	29,30 29,30 29,30

bonds (X: heteroatom), respectively. The designations are not necessarily consistent with those in the original papers. ^b At 25 °C when the temperature is not indicated. ^c Abbreviations: B31XP, Becke's three parameter hybrid functionals with the correlation functional of Lee, Yang, and Parr; ³¹ MP2 or MP3, a Harree-Fock calculation followed by the MIler-Plesset correlation energy correlation truncated at second-order (MP2) or third order (MP3); ²⁰ The hybrid functional of Zano and Truhlar. ³³ *d* Trans and *cis* represent the relative orientations between two carbonyl groups bonded to the benzene ring. ^e The virtual bond was used to represent the benzene or naphthalene ring. ⁷¹ The extrapolation to the complete basis set^{34,35} and the compasation for the higher-order correlations^{36,37} are required for proper evaluation of $\pi - \pi$ interaction energies of these aromatic polyseters. ⁸ The MP2 energies reproduced NMR experiments on the model compounds better than the B31XP ones, whereas the latter energies yielded better agreement with experimental configurational properties of poly(L-lactide) and ¹ Attractive interactions are mainly specified, and repulsions are written in the square brackets. E_{ρ} and E_{σ} are conformational energies (in kcal mol⁻¹) of the gauche states in C–X and XC–C poly(DL-lactide). h By the rotational isomeric state (RIS) scheme with molecular dynamic simulations.

Solvent ^b	Temp (°C)	$J_{\mathrm{CH}}^{\mathrm{O}}$	$J_{ m HH}$	$J_{ m HH}^\prime$	$J_{ m CH}^{ m N}$	$J_{ m HH}^{ m N}$
C_6D_6	15	3.33	6.66	4.72	3.50	5.85
	25	3.33	6.66	4.72	3.50	5.85
	35	3.35	6.60	4.72	3.50	5.85
	45	3.36	6.60	4.78	3.50	5.85
	55	3.38	6.60	4.79	3.50	5.85
CDCl ₃	15	3.12	6.79	3.87	3.32	5.74
	25	3.18	6.78	3.90	3.32	5.74
	35	3.19	6.78	3.93	3.32	5.74
	45	3.24	6.78	3.98	3.31	5.74
	55	3.27	6.75	4.02	3.31	5.74
$(CD_2)_2SO$	25	3 19	6 52	4 96	3 76	5 70
(023)200	35	3 20	6.52	5.02	3 76	5 70
	45	3.24	6.52	5.08	3.76	5.70
	55	3.25	6.48	5.14	3.76	5.72
DО	15	2 10	6 77	2 00	2 00	с
D_2O	15	3.10	6.//	3.80	3.80	_•
	25	3.13	0./0	3.80	3.80	—
	35	3.15	0./5	3.91	3.80	_
	45	3.17	6.74	3.95	3.78	_
	55	3.17	6.74	3.97	3./8	_

Table S2 Observed vicinal ${}^{1}H-{}^{1}H$ and ${}^{13}C-{}^{1}H$ coupling constants of EA-1 and EA-1 $-{}^{13}C$ a

^{*a*}In Hz. ^{*b*} Symbols: C₆D₆, benzene-*d*₆; CDCl₃, chloroform-*d*; (CD₃)₂SO, dimethyl-*d*₆ sulfoxide (abbreviated as DMSO-*d*₆); D₂O, deuterium oxide (water-*d*₂). ^{*c*} Not available.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Bond ^a							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			b: 0–C		c: C–C		d: C–N			
Solvent Temp (°C) Set A b Set B c Set C d Set D e Set E f Set F g Set G h Set H i C ₆ D ₆ 15 0.40 0.42 0.14 0.22 0.10 0.16 0.10 0.11 35 0.40 0.42 0.14 0.22 0.10 0.16 0.10 0.11 45 0.40 0.42 0.14 0.23 0.10 0.16 0.10 0.11 55 0.39 0.41 0.15 0.23 0.10 0.16 0.10 0.11 CDCl ₃ 15 0.46 0.48 0.07 0.14 0.16 0.22 0.15 0.14 25 0.45 0.46 0.07 0.15 0.16 0.22 0.15 0.14 45 0.43 0.45 0.08 0.15 0.17 0.22 0.15 0.14 45 0.42 0.44 0.08 0.16 0.17 0.22 0.1			$J_{ m CH}^{ m O}$		$J_{ m HH}$ and	$J_{ m HH}^{\prime}$	$J_{ m CH}^{ m N}$		$J_{ m HH}^{ m N}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Solvent	Temp (°C)	Set A ^b	Set B ^c	Set C ^d	Set D ^e	Set E ^f	Set F ^g	Set G ^h	Set H ⁱ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_6D_6	15	0.40	0.42	0.14	0.22	0.10	0.16	0.10	0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		25	0.40	0.42	0.14	0.22	0.10	0.16	0.10	0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		35	0.40	0.42	0.14	0.23	0.10	0.16	0.10	0.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		45	0.40	0.41	0.15	0.23	0.10	0.16	0.10	0.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55	0.39	0.41	0.15	0.23	0.10	0.16	0.10	0.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CDCl ₃	15	0.46	0.48	0.07	0.14	0.16	0.22	0.15	0.14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		25	0.45	0.46	0.07	0.15	0.16	0.22	0.15	0.14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		35	0.44	0.46	0.07	0.15	0.16	0.22	0.15	0.14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		45	0.43	0.45	0.08	0.15	0.17	0.22	0.15	0.14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55	0.42	0.44	0.08	0.16	0.17	0.22	0.15	0.14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(CD_{2})_{2}$ SO	25	0.44	0.46	0.17	0.25	0.01	0.08	0 17	0.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(CD3)200	25	0.44	0.40	0.17	0.25	0.01	0.00	0.17	0.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		45	0.44	0.40	0.17	0.20	0.01	0.00	0.17	0.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		55	0.13	0.15	0.10	0.27	0.01	0.00	0.17	0.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		00	0.10	0.11	0.17	0.27	0.01	0.00	0.10	0.1
25 0.46 0.47 0.07 0.14 0.00 0.07 -	D_2O	15	0.47	0.48	0.06	0.14	0.00	0.07	_ j	_ j
35 0.45 0.47 0.07 0.15 0.00 0.07	-	25	0.46	0.47	0.07	0.14	0.00	0.07	_	_
		35	0.45	0.47	0.07	0.15	0.00	0.07	_	_
45 0.45 0.46 0.08 0.15 0.00 0.07		45	0.45	0.46	0.08	0.15	0.00	0.07	_	_
55 0.45 0.46 0.08 0.15 0.00 0.07		55	0.45	0.46	0.08	0.15	0.00	0.07	_	_

Table S3 Trans fractions of the O-C, C-C, and C-N bonds of EA-1, determined from NMR experiments

^{*a*} See Fig. 2a. ^{*b*} With the coupling constants calculated from a Karplus equation proposed by Tvaroška and Gajdoš: ³⁸ $J_{G_1} + J_{G_2} = 2.42$ Hz and $J'_T + J'_G = 9.53$ Hz. ^{*c*} With the coupling constants calculated from MO calculations at the B3LYP/6-311++G(3df,3pd) level: $J_{G_1} + J_{G_2} = 2.26$ Hz and $J'_T + J'_G = 9.87$ Hz. ^{*d*} With the coupling constants of 2-methylmorpholine: *e.g.*, $J_T = 11.62$, $J_G = 2.35$, $J'_T = 11.62$, $J'_G = 3.33$, $J''_G = 1.21$, and $J'''_G = 2.51$ Hz for the chloroform solution. For the details, see reference¹⁷. ^{*e*} With the coupling constants calculated from MO calculations at the B3LYP/6-311++G(3df,3pd) level: $J_T = 11.12$, $J_G = 4.82$, $J'_T = 10.07$, $J'_G = 2.25$, $J''_G = 1.96$, and $J'''_G = 1.82$ Hz. ^{*f*} With the coupling constants calculated from a Karplus equation proposed by Kao and Barfield: ³⁹ $J_{G_1} + J_{G_2} = 1.96$ Hz and $J'_T + J'_G = 7.56$ Hz. ^{*g*} With the coupling constants calculated from MO calculations at the B3LYP/6-311++G(3df,3pd) level: $J_{G_1} + J_{G_2} = 1.57$ Hz and $J'_T + J'_G = 8.03$ Hz. ^{*h*} With the coupling constants calculated from a Karplus equation proposed by Ludvigsen *et al.*: ⁴⁰ $J_{C_1} + J_{C_2} = 8.13$ Hz and $J'_E + J'_C = 12.09$ Hz. ^{*i*} With the coupling constants calculated from MO calculations at the B3LYP/6-311++G(3df,3pd) level: $J_{C_1} + J_{C_2} = 5.16$ Hz and $J'_E + J'_C = 12.48$ Hz. ^{*j*} Not available.

			Bond ^a								
			b: O–C			c: C–C			d: C–N		
Solvent	Solvation model	Temp (°C)	B3LYP ^b	M06-2X ^c	MP2 ^d	B3LYP ^b	M06-2X ^c	MP2 ^d	B3LYP ^b	M06-2X ^c	MP2 ^d
Benzene	IEFPCM	15 25 35 45 55		0.34 0.34 0.34 0.34 0.34	0.37 0.37 0.37 0.37 0.37		0.13 0.14 0.14 0.15 0.15	0.11 0.11 0.12 0.12 0.13		0.19 0.20 0.20 0.20 0.20	0.17 0.17 0.17 0.17 0.18
Chloroform	IEFPCM	15 25 35 45 55	$0.66 \\ 0.65 \\ 0.64 \\ 0.63 \\ 0.63$	0.39 0.39 0.39 0.39 0.39	0.41 0.41 0.41 0.41 0.40	0.19 0.19 0.20 0.20 0.21	0.16 0.16 0.17 0.17 0.18	0.13 0.14 0.14 0.15 0.15	0.07 0.08 0.08 0.08 0.09	$\begin{array}{c} 0.13 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \end{array}$	0.12 0.12 0.13 0.13 0.13
	CPCM	15 25 35 45 55	0.66 0.66 0.65 0.64 0.64	0.40 0.40 0.40 0.40 0.40	0.41 0.41 0.41 0.41 0.41	$\begin{array}{c} 0.20 \\ 0.20 \\ 0.21 \\ 0.21 \\ 0.22 \end{array}$	0.16 0.17 0.17 0.18 0.18	$0.14 \\ 0.14 \\ 0.15 \\ 0.15 \\ 0.16$	0.06 0.06 0.07 0.07 0.07	$\begin{array}{c} 0.11 \\ 0.11 \\ 0.11 \\ 0.12 \\ 0.12 \end{array}$	$0.10 \\ 0.10 \\ 0.11 \\ 0.11 \\ 0.11$
DMSO	IEFPCM	25 35 45 55	0.70 0.70 0.69 0.68	0.45 0.45 0.45 0.44	0.45 0.45 0.45 0.45	0.24 0.24 0.25 0.25	0.20 0.21 0.21 0.21	0.17 0.17 0.18 0.18	0.04 0.05 0.05 0.05	0.08 0.08 0.08 0.09	0.08 0.08 0.08 0.08
	CPCM	25 35 45 55	0.70 0.70 0.69 0.68	0.45 0.45 0.45 0.45	0.45 0.45 0.45 0.45	0.24 0.25 0.25 0.25	0.20 0.21 0.21 0.21	$0.17 \\ 0.17 \\ 0.18 \\ 0.18$	0.04 0.04 0.05 0.05	0.08 0.08 0.08 0.08	$0.07 \\ 0.08 \\ 0.08 \\ 0.08$
Water	IEFPCM	15 25 35 45 55		0.45 0.45 0.45 0.45 0.45	0.45 0.45 0.45 0.45 0.45		0.20 0.20 0.21 0.21 0.22	$0.17 \\ 0.17 \\ 0.17 \\ 0.18 \\ 0.18 \\ 0.18$		0.07 0.08 0.08 0.08 0.08	0.07 0.07 0.08 0.08 0.08

Table S4 Trans fractions of the O–C, C–C, and C–N bonds of EA-1, evaluated from MO calculations

^{*a*} See Fig. 2a. ^{*b*} At the B3LYP/6-311+G(2d,p)//B3LYP/6-311+G(2d,p) level. ^{*c*} At the M06-2X/6-311+G(2d,p)//B3LYP/6-311+G(2d,p) level. ^{*d*} At the MP2/6-311+G(2d,p)//B3LYP/6-311+G(2d,p) level.

		U-1			U-2	
Solvent	Temp (°C)	$J_{ m HH}^{ m N}$	$J_{ m HH}$	$J'_{ m HH}$	$J_{ m HH}$	$J'_{ m HH}$
	15	_b	6.89	5 34	6 4 9	2 02
GD30D	25	_	6.89	5.41	6.44	2.95
	35	_	6.87	5.47	_b	b
	45	_	6.81	5.54	_	—
	55	_	6.74	5.59	_	_
$(CD_3)_2SO$	25	5.81	7.20	5.39	6.65	2.61
	35	5.76	7.15	5.40	_b	_b
	45	5.70	7.14	5.51	_	_
	55	5.70	7.02	5.57	_	_

Table S5 Observed vicinal $^1\mathrm{H}\mathrm{-}^1\mathrm{H}$ coupling constants of U-1 and U-2 a

 a In Hz. b The satellite of U-2 was broadened at temperatures above 25 $^\circ \rm C.$

		U-1 ^a						U-2 ^a			
		c & e: N	–C		d: C–C			h & j: O-C	i: C–C		
		NMR		MO ^b	NMR		MO ^b	MO ^b	NMR		MO ^b
Medium	Temp (°C)	Set A ^c	Set B ^d		Set C ^e	Set D f			Set E ^g	Set F ^h	
Gas	15 25 35 45 55			0.16 0.16 0.16 0.17 0.17			0.13 0.14 0.14 0.14 0.14	0.47 0.46 0.46 0.46 0.45			0.24 0.24 0.25 0.25 0.25
Methanol	15 25 35 45 55			0.19 0.19 0.19 0.19 0.19 0.19	0.18 0.19 0.19 0.20 0.21	0.23 0.24 0.24 0.25 0.26	0.14 0.15 0.15 0.16 0.16	0.65 0.64 0.63 0.62 0.62	0.07 0.08 _ ^j _	0.15 0.15 _ ^j _	0.12 0.13 0.14 0.14 0.15
DMSO	25 35 45 55	0.18 0.21 0.23 0.23	0.17 0.18 0.20 0.20	0.19 0.19 0.19 0.19	0.18 0.18 0.19 0.20	0.21 0.22 0.23 0.24	0.15 0.15 0.16 0.16	0.64 0.63 0.63 0.62	0.04 _ ^j _	0.11 _ ^j _	0.13 0.13 0.14 0.14

Table S6 Trans fractions (p_t 's) of U-1 and U-2: Comparison between NMR experiments and MO calculations

^{*a*} For the bond symbols, see Figs. 2c and 2d. ^{*b*} At the MP2/6-311+G(2d,p)//B3LYP/6-311+G(2d,p) level with the IEFPCM solvation model. ^{*c*} With the coupling constants calculated from a Karplus equation proposed by Ludvigsen *et al.*:⁴⁰ $J_{C_1} + J_{C_2} = 7.98$ Hz and $J'_E + J'_C = 12.44$ Hz. ^{*d*} With the coupling constants calculated from MO calculations at the B3LYP/6-311++G(3df,3pd) level: $J_{C_1} + J_{C_2} = 4.77$ Hz and $J'_E + J'_C = 13.03$ Hz. ^{*e*} With the coupling constants of 2-methylpiperazine: ¹¹ $J_T = 11.92$, $J_G = 2.77$, $J'_T = 11.92$, $J'_G = 3.19$, and $J''_G = 1.92$ Hz for the methanol solution; $J_T = 11.49$, $J_G = 2.74$, $J'_T = 11.49$, $J'_G = 3.05$, and $J''_G = 2.14$ Hz for the DMSO solution. ^{*f*} With the coupling constants calculated from MO calculations at the B3LYP/6-311++G(3df,3pd) level: $J_T = 10.33$, $J_G = 4.51$, $J'_T = 10.38$, $J'_G = 2.62$, and $J''_G = 1.65$ Hz ^{*g*} With the coupling constants optimized for ethylene oxides: ⁴¹ $J_T = J'_T = 11.44$ Hz and $J_G = J'_G = J''_G = 2.3$ Hz. ^{*h*} With the coupling constants calculated from MO calculations at the B3LYP/6-311++G(3df,3pd) level: $J_T = 10.33$, $J_G = 4.96$, $J'_T = 10.73$, $J'_G = 1.39$, and $J''_G = 2.49$ Hz. ^{*j*} Not available.

References

- 1 M. Sawanobori, Y. Sasanuma and A. Kaito, *Macromolecules*, 2001, **34**, 8321–8329.
- 2 Y. Sasanuma, *Annual Reports on NMR Spectroscopy*, Academic Press (Elsevier Science), Oxford, UK, 2003, vol. 49, ch. 5, pp. 213–280.
- 3 Y. Sasanuma, H. Ohta, I. Touma, H. Matoba, Y. Hayashi and A. Kaito, *Macromolecules*, 2002, **35**, 3748–3761.
- 4 Y. Sasanuma and K. Sugita, Polym. J., 2006, 38, 983-988.
- 5 Y. Sasanuma and A. Watanabe, *Macromolecules*, 2006, **39**, 1646–1656.
- 6 Y. Sasanuma, J. Phys. Chem., 1994, 98, 13486-13488.
- 7 Y. Sasanuma, Macromolecules, 1995, 28, 8629-8638.
- 8 Y. Sasanuma, T. Iwata, Y. Kato, H. Kato, T. Yarita, S. Kinugasa and R. V. Law, *J. Phys. Chem. A*, 2001, **105**, 3277–3283.
- 9 R. V. Law and Y. Sasanuma, J. Chem. Soc., Faraday Trans., 1996, 92, 4885–4888.
- 10 R. V. Law and Y. Sasanuma, *Macromolecules*, 1998, **31**, 2335– 2342.
- 11 Y. Sasanuma, S. Hattori, S. Imazu, S. Ikeda, T. Kaizuka, T. Iijima, M. Sawanobori, M. A. Azam, R. V. Law and J. H. G. Steinke, *Macromolecules*, 2004, **37**, 9169–9183.
- 12 Y. Sasanuma and R. Kumagai, *Macromolecules*, 2007, **40**, 7393–7399.
- 13 Y. Sasanuma, F. Teramae, H. Yamashita, I. Hamano and S. Hattori, *Macromolecules*, 2005, **38**, 3519–3532.
- 14 Y. Sasanuma, Y. Ogawa and M. Matsumoto, *Phys. Chem. Chem. Phys.*, 2010, **12**, 14619–14628.
- 15 Y. Sasanuma, Y. Hayashi, H. Matoba, I. Touma, H. Ohta, M. Sawanobori and A. Kaito, *Macromolecules*, 2002, **35**, 8216– 8226.
- 16 Y. Sasanuma, A. Watanabe and K. Tamura, J. Phys. Chem. B, 2008, 112, 9613–9624.
- 17 Y. Sasanuma, R. Kumagai and K. Nakata, *Macromolecules*, 2006, **39**, 6752–6764.
- 18 Y. Sasanuma, S. Asai and R. Kumagai, *Macromolecules*, 2007, 40, 3488–3497.
- 19 Y. Sasanuma, Macromolecules, 2009, 42, 2854-2862.
- 20 Y. Sasanuma and N. Suzuki, *Macromolecules*, 2009, **42**, 7203–7212.

- 21 Y. Sasanuma, Y. Wagai, N. Suzuki and D. Abe, *Polymer*, 2013, 54, 3904–3913.
- 22 Y. Sasanuma and D. Touge, Polymer, 2014, 55, 1901–1911.
- 23 Y. Sasanuma and S. Katsumata, Polym. J., 2013, 45, 727-737.
- 24 Y. Sasanuma, Y. Nonaka and Y. Yamaguchi, *Polymer*, 2015, **56**, 327–339.
- 25 M. Nagasawa, T. Ishii, D. Abe and Y. Sasanuma, *RSC Advances*, 2015, **5**, 96611–96622.
- 26 D. Abe and Y. Sasanuma, Polym. Chem., 2012, 3, 1576-1587.
- 27 D. Abe, Y. Fukuda and Y. Sasanuma, Polym. Chem., 2015, 6, 3131–3142.
- 28 D. Abe, Y. Fukuda and Y. Sasanuma, Polym. Chem., 2016, 7, 1682–1682.
- 29 H. Kato, Y. Sasanuma, A. Kaito, N. Tanigaki, Y. Tanabe and S. Kinugasa, *Macromolecules*, 2001, 34, 262–268.
- 30 Y. Sasanuma, H. Kato and A. Kaito, J. Phys. Chem. B, 2003, 107, 11852–11860.
- 31 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 32 C. Moller and M. S. Plesset, Phys. Rev., 1934, 46, 618-622.
- 33 Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157-167.
- 34 T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys., 1997, **106**, 9639–9646.
- 35 D. G. Truhlar, Chem. Phys. Lett., 1998, 294, 45-48.
- 36 M. Pitoňák, P. Neogrády, J. Černý, S. Grimme and P. Hobza, *ChemPhysChem*, 2009, **10**, 282–289.
- 37 C. A. Morgado, P. Jurečka, D. Svozil, P. Hobza and J. Šponer, *Phys. Chem. Chem. Phys.*, 2010, **12**, 3522–3534.
- 38 I. Tvaroška and J. Gajdoš, Carbohydr. Res., 1995, 271, 151– 162.
- 39 L.-F. Kao and M. Barfield, J. Am. Chem. Soc., 1985, 107, 2323– 2330.
- 40 S. Ludvigsen, K. V. Andersen and F. M. Poulsen, J. Mol. Biol., 1991, 217, 731–736.
- 41 K. Tasaki and A. Abe, Polym. J., 1985, 17, 641-655.