Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI†)

Naphthalimide–coumarin conjugate: ratiometric fluorescent receptor for self-calibrating quantification of cyanide anion in cells

Yasuhiro Shiraishi,^{a,b}* Naoto Hayashi,^a Masaki Nakahata,^c Shinji Sakai^c and Takayuki Hirai^a

^{*a*} Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan ^{*b*} PRESTO, JST, Saitama 332-0012, Japan

^c Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan

shiraish@cheng.es.osaka-u.ac.jp

CONTENTS

Table S1	• TD-DFT calculation results for 1' and [1'–HCN] [–]	.2
Fig. S1	¹ H NMR chart of 1	.3
Fig. S2	¹³ C NMR chart of 1	.4
Fig. S3	FAB-MS chart of 1	.5
Fig. S4	Time-dependent change in fluorescence spectra of 1	.6
Fig. S5	pH-Dependent change in the fluorescence intensity of 1	.7
Fig. S6	$^{1}\text{H}^{-1}\text{H}$ COSY chart of 1	.8
Fig. S7	$^{1}\text{H}^{-1}\text{H}$ COSY chart of $[\mathbf{1'}^{-}\text{HCN}]^{-}$.9
Fig. S8	FAB-MS chart for the product obtained by the reaction of 1 with CN^{-} 1	0
Fig. S9	Absorption spectra of 1 and [1 '–HCN] [–]	1
Fig. S10	Cell viability 1	1
Cartesia	n coordinates for respective compounds1	2

compound		Main orbital transition (CIC ^[a])	$E (eV) [\lambda (nm)]$	f
	0.0	HOMO–1→LUMO (0.1274)	2 0922 - XI [505 45 mm]	0.2709
	$\mathbf{S}_0 \rightarrow \mathbf{S}_1$	HOMO→LUMO (0.66351)	2.0822 eV [595.45 nm]	
		HOMO–2→LUMO (–0.13519)] 0.1303
	$S_0 \rightarrow S_2$	HOMO–1→LUMO (0.65002)	2.4022 eV [516.12 nm]	
		HOMO–1→LUMO+2 (0.11064)		
		HOMO-2→LUMO (0.63054)		
	C C	HOMO–1→LUMO (0.11524)	2 00 77 X (414.00 1	0.2544
	$S_0 \rightarrow S_3$	HOMO–1→LUMO+2 (–0.118)	2.9877 ev [414.99 nm]	0.3544
		HOMO→LUMO+1 (-0.1104)		
		HOMO–3→LUMO (–0.14082)		
	9 9	HOMO–2→LUMO (0.11213)		n] 0.1277
1'	$S_0 \rightarrow S_4$	HOMO→LUMO+1 (0.54394)	3.115/ ev [39/.93 nm]	
		HOMO→LUMO+2 (0.3419)		
		HOMO–2→LUMO (0.13045)		
		HOMO–2→LUMO+2 (–0.10679)		
	$S_0 \rightarrow S_5$	HOMO–1→LUMO+2 (0.59954)	3.2612 eV [380.17 nm]	0.0172
		HOMO→LUMO+1 (0.12527)		
		HOMO→LUMO+2 (-0.18121)		
		HOMO–3→LUMO (–0.18455)		n] 0.1713
		HOMO–2→LUMO+2 (–0.12133)		
	$S_0 \rightarrow S_6$	HOMO–1→LUMO+2 (0.16452)	3.3726 eV [367.62 nm]	
		HOMO→LUMO+1 (-0.31593)		
		HOMO→LUMO+2 (0.48233)		
	$S_0 \rightarrow S_1$	HOMO \rightarrow LUMO (0.70568)	2.2116 eV [560.61 nm]	0.0003
	G G	HOMO–1 \rightarrow LUMO (0.64000)	2 8770 aV [420 82 nm]	0.3315
	5 0→52	HOMO-1 \rightarrow LUMO+3 (-0.11607)	2.8779 EV [430.82 IIII]	
	$S_0 \rightarrow S_3$	HOMO–2 \rightarrow LUMO (0.68930)	2.2806 oV [277.02 nm]	0.0067
[1' –HCN] [–]		HOMO \rightarrow LUMO+1 (-0.11225)	5.2800 eV [577.95 lill]	
	$S_0 \rightarrow S_4$	HOMO–2 \rightarrow LUMO (0.12200)	3 4332 eV [361 13 nm]	0.2942
		HOMO \rightarrow LUMO+1 (0.61102)	<i>5.1552</i> ст [501.15 ниц]	
	$S_0 \rightarrow S_5$	HOMO $-3 \rightarrow$ LUMO (0.70271)	3.6106 eV [343.39 nm]	0.0021
	$S_0 \rightarrow S_6$	HOMO \rightarrow LUMO+2 (0.70471)	3.7164 eV [333.61 nm]	0.0032

Table S1. Calculated excitation energy (*E*), wavelength (λ), and oscillator strength (*f*) for low-laying singlet state (S_n) of 1' and [1'–HCN][–].

^[a] CI expansion coefficients for the main transitions.

Fig. S1 1 H NMR chart of 1 (10 mM, DMSO–d₆, 400 MHz).

Fig. S2 ¹³C NMR chart of **1** (30 mM, CDCl₃, 100 MHz).

Fig. S3 FAB–MS chart of 1.

Fig. S4 (a) Time-dependent change in fluorescence spectra of **1** (10 μ M), measured with 40 μ M of CN⁻ in a buffered water/MeCN mixture (1/1 v/v; HEPES 0.1 M, pH 7.0) at 25°C. (b) Change in the ratio of fluorescence intensity (FI₄₄₄/FI₅₃₃), where FI₄₄₄ is the intensity at $\lambda_{em} =$ 444 nm and FI₅₃₃ is the intensity at $\lambda_{em} =$ 533 nm), respectively. (c) Pseudo-first-order kinetic plot of the normalized fluorescence increase of **1** (10 μ M) with 40 μ M of CN⁻.

Fig. S5 pH-Dependent change in the fluorescence intensity at 444 nm and 533 nm of **1** (10 μ M) measured in water/MeCN mixtures (1/1 v/v) at 25 °C with different pH (a) without and (b) with 200 equiv of CN⁻. (c) Change in the ratio of the fluorescence intensity (FI₄₄₄/FI₅₃₃) of **1** (10 μ M) measured in water/MeCN mixtures (1/1 v/v) with different pH at 25 °C, (white) without and (black) with CN⁻.

Fig. S6 1 H- 1 H COSY chart of **1** (30 mM, DMSO–d₆, 400 MHz). Colored circles indicate the observed cross peaks. The texts next to the circle mean the coupling protons.

Fig. S7 1 H- 1 H COSY chart of 1:1 association species for **1** and CN⁻ (30 mM, DMSO–d₆, 400 MHz). Colored circles indicate the observed cross peaks. The texts next to the circle mean the coupling protons.

Fig. S8 FAB–MS chart of 1:1 association species for 1 and CN⁻.

Fig. S9 Change in the absorption spectra of $1 (10 \,\mu\text{M})$ in a buffered water/MeCN mixture (1/1 v/v; HEPES 0.1 M, pH 7.0) at 25°C.

Fig. S10 Viability of HeLa cells determined before and after 20 min incubation with DMF containing $1 (100 \ \mu\text{M})$ at 37°C.

Cartesian Coordinates (in Å) of 1' (DFT/B3LYP/6-31+G*)

С	3.097334	2.92449	-0.88103	0	-4.62723	-3.85619	-0.5609
С	1.772245	3.3787	-0.99741	0	-3.43792	2.964953	0.540858
С	0.721157	2.601123	-0.53239	Н	3.929279	3.52102	-1.24323
С	0.963309	1.341692	0.06247	Н	1.571855	4.347546	-1.4478
С	2.309548	0.888234	0.203195	Н	-0.30831	2.941663	-0.59522
С	3.369618	1.698579	-0.28455	Н	-0.608	-1.31205	1.578261
С	-0.12671	0.51098	0.531723	Н	1.742919	-2.06963	1.79237
С	0.193089	-0.70296	1.170293	Н	-2.22744	-0.8518	-0.01816
С	1.517496	-1.12466	1.306038	Н	-5.97579	3.288196	0.33817
С	2.5817	-0.35764	0.829152	Н	-7.61754	1.496872	-0.06512
С	3.958726	-0.82762	0.985532	Н	-7.22412	-3.31805	-0.71158
Ν	4.98023	0.015239	0.485087	Н	-8.92758	-0.49415	0.433966
С	4.769491	1.2432	-0.15856	Н	-8.77716	-0.25257	-1.30801
0	5.727005	1.89259	-0.58616	Н	-9.08087	-1.87892	-0.6656
0	4.264314	-1.89689	1.519495	С	6.369769	-0.44365	0.638025
Ν	-1.39494	1.001802	0.388567	Н	6.992679	0.448724	0.726154
С	-2.40941	0.210392	0.185319	Н	6.415018	-1.01688	1.566216
С	-3.78506	0.612631	0.152331	С	6.843402	-1.30602	-0.53907
С	-4.21684	2.01629	0.3249	Н	6.754647	-0.72375	-1.4658
С	-5.65807	2.255645	0.218509	Н	6.179915	-2.17558	-0.63163
С	-6.55799	1.257958	-0.00461	С	8.292335	-1.77827	-0.36213
С	-6.15235	-0.10798	-0.16271	Н	8.95088	-0.90308	-0.25967
С	-4.77186	-0.37902	-0.08078	Н	8.37833	-2.34182	0.578608
С	-7.05358	-1.19378	-0.39549	С	8.783828	-2.65145	-1.52345
С	-6.56864	-2.47192	-0.53521	Н	8.739244	-2.10536	-2.47472
С	-5.16521	-2.76508	-0.45407	Н	9.821561	-2.97504	-1.37185
0	-4.32796	-1.66804	-0.22366	Η	8.164691	-3.55161	-1.62914
С	-8.54017	-0.94394	-0.48917				

Cartesian Coordinates (in Å) of [1'-HCN]⁻ (DFT/B3LYP/6-31+G*)

С	3.208333	2.962385	-0.46945	0	-2.88919	2.761697	0.332131
С	1.877622	3.404258	-0.52087	Н	4.031708	3.622184	-0.72497
С	0.840279	2.542783	-0.19196	Н	1.654728	4.424806	-0.81987
С	1.094	1.208945	0.20369	Н	-0.17825	2.916087	-0.24501
С	2.450855	0.758399	0.256073	Н	-0.38903	-1.72934	1.238273
С	3.495509	1.658612	-0.08677	Н	1.95852	-2.44742	1.280952
С	0.02828	0.280532	0.552424	Н	-2.31684	-1.11494	0.483674
С	0.381245	-1.02604	0.943233	Н	-5.1703	3.464648	-0.68409
С	1.712684	-1.43409	0.977378	Н	-6.9812	1.919768	-1.33534
С	2.757831	-0.57356	0.642116	Н	-7.40572	-2.94597	-1.16691
С	4.140175	-1.04239	0.695939	Н	-8.77565	0.263585	-1.0282
Ν	5.145974	-0.10123	0.362076	Н	-8.07767	0.139346	-2.64485
С	4.907242	1.21546	-0.0427	Н	-8.87516	-1.26959	-1.91682
0	5.846107	1.956792	-0.34313	Н	-1.5189	1.691219	0.383982
0	4.467222	-2.18904	1.010999	С	-2.56786	-0.16547	2.325124
Ν	-1.25715	0.694915	0.465742	Ν	-2.67195	-0.23624	3.48062
С	-2.42784	-0.08533	0.83878	С	6.545761	-0.55053	0.427047
С	-3.68263	0.507245	0.205779	Н	6.598427	-1.30861	1.210652
С	-3.81492	1.936587	0.022947	Н	7.146299	0.315799	0.712642
С	-5.06108	2.391696	-0.55058	С	7.046972	-1.12789	-0.90277
С	-6.06183	1.523686	-0.91023	Н	6.410147	-1.97684	-1.18415
С	-5.92959	0.117825	-0.74676	Н	6.942845	-0.36455	-1.685
С	-4.71421	-0.34311	-0.17997	С	8.50941	-1.58438	-0.81908
С	-6.92132	-0.84953	-1.1052	Н	9.139157	-0.73384	-0.51891
С	-6.6778	-2.18602	-0.90379	Н	8.61013	-2.33889	-0.0251
С	-5.44607	-2.66722	-0.33623	С	9.03303	-2.16291	-2.13941
0	-4.5118	-1.68882	0.017777	Н	10.07972	-2.48098	-2.05151
С	-8.23408	-0.40802	-1.70646	Н	8.443457	-3.03528	-2.44975
0	-5.13239	-3.82868	-0.13186	Н	8.975768	-1.42051	-2.94605